Assessment of the pore opening size of knitted geotextiles by image analysis

Eric Blond
Eric Blond Consultant Inc.
eric@ericblond.com
+1-514-621-9934
www.ericblond.com

Why another standard?
* ASTM D4751:
 * Method A: Dry sieving with glass beads (historical method)
 * Method B: Porometer (~ ASTM D6767)
* CGSB 148.1 n°10
 * Hydrodynamic sieving
* ISO 12956
 * Wet sieving

However - there are problems which are specific to circular-knit geotextiles
Properties of knitted geotextiles

* Structure is manufactured and extremely regular
* Very low coefficients of variation on all properties for well-conducted tests
* Manufacturing parameters can be adjusted to provide the product with a very precise opening size
* The opening size is measured when applied to a pipe having a nominal diameter for which the geotextile is specifically produced

Typical knitted geotextiles

Typical structures complying to ASTM D6707:
* 2D: typical knitted geotextile
* 3D: tighter knitted geotextiles, with smaller opening sizes
Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests

Eric Blond - Assessment of the pore opening size of knitted geotextiles by image analysis

Testing knitted geotextiles per D4751-A (dry sieving)

- Product is highly deformable; procedure includes a controlled elongation to reflect ‘as applied conditions’
- Specimen preparation is NOT reliable. Requires pulling of the geotextile on the tube. Elongation on the circumference of the tube is typically not constant.
- Transfer of the product from the pipe to the clamp is a problem, adds an important source of errors
- Faulty test results are frequent – i.e., there may be one or two outliers on a series of five specimens.
- The procedure is not applicable to pipes with a small diameters (e.g., 2’’)

Testing knitted geotextiles per ISO 12956 (wet sieving)

- ISO 12956: an attempt to improve the technique was made (insertion of a stiff ring)

Annex C (normative)

Preparation of knitted socks for testing

Apply the knitted sock test specimen over the outside of the corresponding diameter of a 100 mm length of vertical tubing or measure above having the same diameter as the pipe material to which the test is attached.

Fig. 14

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – I G S Technical Committee on Hydraulics – April 26, 2022
knitted geotextiles can exhibit opening sizes up to 600 µm (D6707)

- not in the ‘comfort zone’ for porometer tests: the larger the opening, the lower the pressure to measure a BBP, hence the lower the precision.
- The issue with clamping the specimen under controlled stress conditions remains
- Displacement of the specimen from a hanging pipe to the test equipment (while under stress)?

14. Calculation of the O95 Opening Size Value

The calculation of opening size is based on the following equation:

\[O = C \times P \] \hspace{1cm} (1)

where:
- \(O \) = opening size in microns, µm,
- \(C \) = correlation factor determined per Annex A1, and
- \(P \) = pressure in Pascals (N/m²) obtained during the wet test at the flow rate that is 1 %, 2 %, or 5 % of the dry flow rate at the same pressure.

Solution considered

- Improve the stretching technique
- Better handling
- Save time
- Improve repeatability?
- Prefer a non-destructive technique, where the measurement is made while the specimen is in a well-controlled stress conditions
 - Avoid transfer of specimens from a pipe to a clamp.
- Benefit from a unique feature of the knitted geotextile: it’s low thickness = it is possible to see-through the openings!
Solution developed

* Optical technique
 * Direct measurement of a dimension
 * No glass beads!

* Use a dedicated stretching rig
 * Better control of the stress
 * Easier installation avoiding pulling the fabric
 * Possibility to make an optical measurement without moving the specimen

Optical solutions

There are other experiences with optical methods:
* RTA T1524 – New South Wales (stretching to percent increase of initial length)

* MQC at Dupont Luxembourg since ~2001
 * For lightweight heat bonded geotextiles
 (See next presentation)
Key results or a R&D Collaborative project

Tested products: Carriff knitted geotextiles
Opening size tests: Performed by CTT Group
Optical tests: Developed by Western University (formerly UWO)
Repeated by CTT Group

Stretching of the specimen

* First generation (UWO): mimicking the drainage pipe used in D4751
 * Main weakness: requires one rig for each pipe diameter
Recent Advances in Geotextile Filtration
Design: Pore Opening Size Measurement
using a Porometer or an Optical Tests

Stretching of the specimen

* Second generation: idealized stretching conditions

Image Analysis

Development conducted by Surface Science Laboratory at Western University (formerly UWO)

* Image acquisition
* Image processing
* Measuring relevant property (which one!)

Eric Blond - Assessment of the pore opening size of knitted geotextiles by image analysis
Image acquisition and processing

- Image acquisition
 - Minimum surface / number of openings
 - Image resolution
- Freeware software
 - ImageJ [https://imagej.nih.gov/ij/]
- Image processing
 - Separate ‘fibers’ from ‘openings’
 - Exclude stray yarns

Figure 5. Flowchart representing the image processing method used on IGS raw images.

Software used: ‘ImageJ’ (freeware) with Fiji plugin

- **Area:** Surface area of each pore.
- **Perimeter:** Length of the pore’s border.
- **Feret’s Diameter:** Longest distance between parallel lines around the pore.
- **Minimum Feret’s Diameter:** Shortest distance between parallel lines around the pore.
- **Major Ellipse Axis:** Length of the major axis of an ellipse fit to the pore.
- **Minor Ellipse Axis:** Length of the minor axis of an ellipse fit to the pore.
Reference value?

- A reliable reference opening size is needed for comparison with IOS
 - AOS (D4751, dry sieving)
 - FOS (CGSB 148.1 n°10, hydrodynamic sieving)

- Deviation inherent to the test procedure (stressed and relaxed) is higher for AOS than for FOS – even after exclusion of outliers.

- Hence FOS was considered as the reference properties for comparison with image opening size results.

- Conclusions made using FOS as a reference remain applicable to AOS, based on the observed correlation ($R^2=0.95$) between AOS and FOS for the circular knit geotextiles tested.
Image analysis results

- **Type**
 - Feret (major, minor)
 - Ellipse (major, minor)
 - Area-based
 - Perimeter-based

- **Percentile**
 - 95%
 - Actual
 - Normalized curve
 - 50%

Properties offering the best correlation to FOS

Best R^2 (~98%) noticeably obtained for:
- d_{50}^f: Mean Minor Feret Diameter
- d_{50}^e: Mean Minor Ellipse Diameter

Consistent with the concept of a spherical bead passing through the opening: limited by the minimum distance available
Further verifications

Determination of ‘O₅₀’, ‘O₉₅’?

* Percentage of the number of units?
* Percentage of the surface?
* Percentage of the volume?

Validation with the universal stretching rig (CTTG)

* Similar relation observed:
 * Min Feret diameter
 * Good correlation with O₅₀, O₅₀S, O₅₀V and d_mean
* Mean diameter ‘d_mean’ suggested
 * Convenience!
 * Less risks of errors
 * Frequently observed throughout the surface (in contrary to 95 percentiles)
Usefulness of optical results

- Provides extensive data on the shape and distribution of openings
- Meets and exceeds current manufacturing quality control needs
- Excellent correlation between “C*FOS” and the mean minimum diameters (Feret or Ellipse), with R^2 greater than 97%
- Consistent with the concept of a spherical bead passing through the opening
- For knitted geotextiles, there is a relation between FOS and AOS with a R^2 of ~0.95, hence AOS is also correlated to the optical test results.
- An experimental correction factor ‘C’ will be required if the intention is to estimate FOS and AOS (and other properties?) based on Image Opening Size

Practical considerations

- Optical test: MUCH quicker to perform than AOS of FOS – can be efficiently implemented in MQC at low cost
- Much less parameters need to be controlled (beads, etc)
- Proposed rig: stretching is better controlled + the test is non-destructive
- Standardization in progress
 - Not applicable to needle-punched. Other structures? Heat bonded? Woven?
 - The test report should provide a full characterization of the pores, i.e., the distribution of minimum and maximum diameters, and include a significant property, e.g., d_{50}
Further presentations

| Introduction | Eric Blond
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of existing pore opening size measurement techniques, how reliable are ASTM D4751 and ISO 12956?</td>
<td>Eric Blond</td>
</tr>
</tbody>
</table>
| Innovative technique #1: porometer | Sam Allen
| 1. Benefits of PSD and the porometer test for AOS determination | Melissa Medlin (TenCate) |
| 2. Experimental correlation between porometer and AOS tests | |
| Innovative technique #2: optical measurement | Eric Blond
| 1. Assessment of the pore opening size of knitted geotextiles by image analysis | A-L Backes (Dupont) |
| 2. Application of optical measurements for MQC of heat-bonded geotextiles | |
| Q&A | |