Design: Pore Opening Size Measurement using a Porometer or an Optical Tests

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Test IGS Technical Committee on Hydraulics
April 26, 2022

Assessment of the pore opening size of knitted geotextiles by image analysis

Eric Blond
Eric Blond Consultant Inc.

eric@ericblond.com

+1-514-621-9934

www.ericblond.com

1

Image Opening Size

Why another standard?

- * ASTM D4751:
 - * Method A: Dry sieving with glass beads (historical method)
 - * Method B: Porometer (~ ASTM D6767)
- * CGSB 148.1 n°10
 - * Hydrodynamic sieving
- * ISO 12956
 - * Wet sieving

However - there are problems which are specific to circular-knit geotextiles

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – IGS Technical Committee on Hydraulics – April 26, 20:

Properties of knitted geotextiles

- * Structure is manufactured and extremely regular
 - * Very low coefficients of variation on all properties for well-conducted tests
 - * Manufacturing parameters can be adjusted to provide the product with a very precise opening size
- * The opening size is measured when applied to a pipe having a nominal diameter for which the geotextile is specifically produced

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – IGS Technical Committee on Hydraulics – April 26, 2022

3

Typical knitted geotextiles

Typical structures complying to ASTM D6707:

- *2D: typical knitted geotextile
- *3D: tighter knitted geotextiles, with smaller opening sizes

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – IGS Technical Committee on Hydraulics – Ap

Testing knitted geotextiles per D4751-A (dry sieving)

- * Product is highly deformable; procedure includes a controlled elongation to reflect 'as applied conditions'
 - * Specimen preparation is NOT reliable. Requires pulling of the geotextile on the tube. Elongation on the circumference of the tube is typically not constant.
 - * Transfer of the product from the pipe to the clamp is a problem, adds an important source of errors
 - * Faulty test results are frequent i.e., there may be one or two outliers on a series of five specimens.
 - * The procedure is not applicable to pipes with a small diameters (e.g., 2")

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – IGS Technical Committee on Hyo

5

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests

Solution considered

- * Improve the stretching technique
 - * Better handling
 - * Save time
 - * Improve repeatability?
- * Prefer a non-destructive technique, where the measurement is made while the specimen is in a well-controlled stress conditions
 - * Avoid transfer of specimens from a pipe to a clamp.
- * Benefit from a unique feature of the knitted geotextile: it's low thickness = it is possible to see-through the openings!

Solution developed

- *Optical technique
 - * Direct measurement of a dimension
 - * No glass beads!
- *Use a dedicated stretching rig
 - * Better control of the stress
 - * Easier installation avoiding pulling the fabric
 - * Possibility to make an optical measurement without moving the specimen

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – IGS Technical Committee on Hydraulics – April 26, 2022

9

Stretching of the specimen

* Second generation: idealized stretching conditions

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – IGS Technical Committee on Hydraulics – April 26, 2022

13

Image Analysis

Development conducted by Surface Science Laboratory at Western University (formerly UWO)

- *Image acquisition
- *Image processing
- *Measuring relevant property (which one!)

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – IGS Technical Committee on Hydraulics – April 26, 20:

Usefulness of optical results

- * Provides extensive data on the shape and distribution of openings
 - * Meets and exceeds current manufacturing quality control needs
- * Excellent correlation between "C*FOS" and the mean minimum diameters (Feret or Ellipse), with R² greater than 97%
 - * Consistent with the concept of a spherical bead passing through the opening
 - * For knitted geotextiles, there is a relation between FOS and AOS with a R² of ~0.95, hence AOS is also correlated to the optical test results.
- * An experimental correction factor 'C' will be required if the intention is to estimate FOS and AOS (and other properties?) based on Image Opening Size

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – IGS Technical Committee on Hydraulics – April 26, 2022

23

Practical considerations

- Optical test: MUCH quicker to perform than AOS of FOS – can be efficiently implemented in MQC at low cost
- Much less parameters need to be controlled (beads, etc)
- * Proposed rig: stretching is better controlled + the test is non-destructive
- * Standardization in progress
 - * Not applicable to needle-punched. Other structures? Heat bonded? Woven?
 - * The test report should provide a full characterization of the pores, i.e., the distribution of minimum and maximum diameters, and include a significant property, e.g., d^F₅₀

Recent Advances in Geotextile Filtration Design: Pore Opening Size Measurement using a Porometer or an Optical Tests – IGS Technical Committee on Hydraulics – April 26, 2022

