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ABSTRACT- The response of a
cohesionless granular medium reinforced
with a uniformly spaced orthogonal
network of reinforcement to the action
) is studied.The
medium 1is treated as a continuum. The
sand phase - is . assumed to behave
according to the constitutive equation

proposed by Poorooshasb and his
colleagues and the reinforcement phase

~according to a set of rules that are

described fully in the paper. The

. constitutive equation derived for the

two phase soil (reinforced soil) 1is
objective and hence may be used
directly in any analysis involving such
media.

INTRODUCTION

The material reported in this paper
describes some. preliminary results of
joint research conducted in Kyoto and
Concordia Universities regarding
reinforced: sand. The sand phase is
assumed to behave ‘as an elasto strain
hardening plastic continuum obeying the
constitutive relation proposed by
Poorooshasb et al (1966,67) modified
later by Poorooshasb and Pietruszazck
(1986) .The reinforcement phase- is also
a continuum capable of

shearing stresses for bounded values of
deformations.The final constitutive
equation for the composite medium is
derived by harmonising the deformation
of the two phases of the medium and
equating the sum of internal forces in
the two phases to the external forces
acting on the element. The relation
obtained between stress and
rates are objective with a non singular
matrix relating the stress and strain
rate spaces.

Rectangular Cartesian tensors and small
deformation theory is used throughout.

strain
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STRESS DEFORMATION PROPERTIES OF THE
REINFORCEMENT PHASE

The reinforcement is assumed to be

“orthogonal and to consist of a series

of units placed at equal distances and
mutually normal to each other.Fig. (1)
shows two such cases. .

Although the three dimensional
reinforcement, Fig.(l,a), is unlikely
to be of great practical interest the

"analysis presented here will include

its treatment for the sake of
completeness.The reinforcement scheme
shown in Fig. (1,b) is in comon use and
is sometimes referred to as sheet
reinforcement.

Let the spacial axis of reference be
denoted by x,(=x,,X,,X;) such that they
coincide with the directions of the
reinforcements.Let n;=(n,,n,,n;) be the
fraction area of the reinforcements in
the x; directions. Then if the stress
and strain tensors in the--
reinforcements are denoted by r,;y and

@ -

Fig. (1) -Orthogonal reinforcement
(a) Three dimensional and (b) Twc
dimensional reinforcements.



€y respectively and remembering that

the reinforcement phase 1is
treated as a continuum then
following set of relations exist

being
the

Fy1 En, TN
F12 912 0 &2
M3 943 §3
Fa2 0 En, %2
roa g €

2 23 23
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Eq. (1)
where E 1s Youngs modulus of the

material of the reinforcement and g,,,
gj; and g,, are equivalent shear moduli
of the frame. They are not equal to the

shear modulus of the reinforcing
material rather to reinforcing
structure. For example if the

reinforcing sheet, Fig. (2),has a pitch
of L (i.e. the distance between
adjacent members is L) and the breadth
(width) of a typical member is

b then using elementary theory of
structures the equivalent shear
modulus is calculated to be g=E(b/2L)3-
Thus for a b/L ratio of 10 say,the
value of g is evaluated to be E/8000!
The above relation is with reference to
a special frame of reference (i.e.when
the x; axis are directed along the
reinforcement directions.) To obtain an
objective constitutive relation they
must be expressed in an arbitrarily
chosen frame.To this end note that

since both Tyy and &€ are treated as

1
second order tensors then the
coefficients relating them to each

other must be a fourth order tensor
which shall be denoted by Cﬁkl.Stated

(a)

(b)

Fig. (2) Rigid grid (a) before shear
(b) after shear. )
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Fig. (3) Key figure.

otherwisebijkl is a fourth order tensor
with principal values given in Eq.(1).
The evaluation of the components of
Cijx1 is straight forward and for the

simpler two dimensional case is carried
out in detail below. Referring to
Fig.(3) 1let x'; (i=1,2,3) be a new

system of coordinates.It is required.to
obtain the components of the tensor C

in the new system x';. The fourth order

tensor C has 16(=2% components in two
dimensions but only three constants
would appear 1in the constitutive
matrix.When the axis of reference are
codirectional with the axis of
reinforcements these are; ‘

Ci111=Eny

C1212C2121=9

C22,"ED

2

all other components being zero.In the
x', system of reference and after

symmetrizing the matrix the coeficients
are obtained as;

C'11115K,* X,cos2a.- ¥,sin?2a/2
C'12= C'ypp=- (Zﬁzsin2a+\€3sin4a) /4
C'i122= C'22115K,sin?2a,/2

C'121,=K,~K, cos?2a
C'y220= C'2212=- (2K, sin2a-x;sinda) /4

C'222,=K,~K,co520-K,sin?2q/2

wherex1= (En,+En,) /2, K,= (En,-En,) /2, K=
(En;+En,) /2-g and

-, -, ’, PR -8,
5 Ciin Cii12 C1122 11
’ 4 ’ 4 4
32 | = [Ci211 G212 C1222 § |2
r’ ’ , ’ ’
. 22 ] _C2211 2212 C2222 i _822_

Note that if n,=n, then K2=O,



] —3 —
+C122= Xy 1 €'y 1CT,,5,= X, and

=0. Thus for a state of pure

[
c 1111

r )
c 1211 C 1222

compression whereby &',,= €',,=g, €';,=0

the above relations yield r',;=r 25=%,Er

r',,=0 as expected.

Finally since the deformation response
of the reinforcing grid to stress is
assumed to remain linear during the
loading process (i.e. E and g are
assumed to remain constant) then it is
rational to state

Ty TCoixa i (2)

where iijand é“are the stress rate and

the strain rate tensors respectively.

Having obtained the coefficients of the
deformation matrix for- the

reinforcement the constitutive relation’

of the sand phase is examined next.

STRESS DEFORMATION PROPERTIES.OF THE -

SAND PHASE

_ The constitutive relation proposed for

sand assumes the. existence of a global

$é and a local

potential ¢' which is derived from the
global ‘plastic potential. During virgin
loading the plastic strain rate tensors
are derived from ¢ and during stress

plastic potential

reversals from ¢'.Thus the strain rate

tensor is related to the stress rate
tensor by the relation;

.ij= é;;.lasr;ic + .eipjlastic
=~ E .S, . +3 % (3)
Sk A'asij (
where sy is the effective stress
‘tensor associated with the sand phase,
E;j, are the elastic moduli and A' is
the 1loading index. Its magnitude

depends on whether the sand is loading,
unloading (in which case its magnitude
is zero) or reloading (in which case
its magnitude is related to a conjugate
quantity associated with the bounding
surface, Dafalias(1982)).Specifically
the loading index is given by the
relation

. af .

where f is the yleld'function and h is
a parameter that determines the
magnitude of plastic strain increment
tensor. It is related to the history of
loading of the element.

Denoting by 1I,,J, and J; the first
invariant of the stress tensor and the
second and third invariants of the
stress deviation tensor respectively

(i.e.I,=s,,, J,=VS; S,y and J,= $;5,,5;
11§H/3)the yield

function F may be expressed through the
relation

Sy4 being equal to Syy”

F= J,-N(8)I,9(8)=0

during the virgin loading process. In

this last equation T (g€) records the
history of loading in terms of the
total plastic strain €, and 06 is a

function of the first and the third
invariants (it is equivalent to Lode's

angle) . The function g(6) has a certain

symmetrical form about B=nn/3 for an

isotropic- sand. If g(8)=constant then
the extended von Mises yield surface
would obtain.

It must be emphasized that only durlng
virgin loading the vyield function £
coincides with the bounding surface F.
In general (e.qg. during stress
reversals) such a relation does not
exist and indeed the kinematics of the
yield surface within the bounding
surface follows certain rules which can
not be presented here.The interested
reader may refer to the papers by the
second author and his colleauges on
stress deformation of sand.

STRESS DEFORMATION PROPERTIES OF THE
REINFORCED MEDIUM. :

Combination of Egs.(2) and (3) results
in the equation

;- R S

£37 Casni (Brypy Spath 3o

which upon substitution from'Eq.(4)
for A reduces to

. a¢) af .
r, =cC (E +h s wain) s (S)
13 Yidx1 pq "
_ Ix xlpg  ds «195pq
Equation (5) 1is the first equation
relating the stress tensor in - the

reinforcement T,y to stress tensor in
the sand phase S;y-In its derivation it

has been tacitly assumed that the sand
and the reinforcing grid deform harmo-
niously i.e. no slippage take place
between the two phases of the composite
medium.

"A second equation to relate the stress
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tensors ryy and S,y may be obtained

noting that their sum must equal the



area I

S91

Fig. (5)
of unit volume of reinforced sand

Schematic representation

external applied stress cn.Before this

is done however it 1is worth stating
that the r,;y tensor is a tensor of

apparent stresses;see Fig.(5). The
actual stress acting in the reiforcing
bars is r“/n(” where n,, is the area

-fraction of the reinforcement in the
ith face of the control volume of the
medium. The situation is quite similar
to flow of fluid through porous media
where the apparent velocity is used in
the constitutive equation of D'Arcy and
is related to the loss of energy. The
relation between apparent velocity and
the actual wvelocity of flow 1is
precisely the relation stated above
i.e.vy=v,/n,-

Thus the relation

rij+sij(1- n(i))= oij (6)
exists.Now if n, is small compared to
unity then

ryytSyy= Oy (6,2)

and a similar expression may be written
for the rates of TyyrSyy and Oij.
Let for reason of convenience;

Diqu=Cijkl{Eklpq+h(3¢/askl)(aflaqu}}
Then Eqg. (5) may be written as

> o= 2 7
T4 5Py 4p45pq (7

and when combined with Eqg. (6) yields
si?’Diquspcf Oy (8)
Equation (8) relates the stress in the

sand phase to the externally imposed
stresses.

‘will be demonstrated by means

8, &

But s,;y=s_ .6, 0, where Bij is the

Kronecker's delta.Thus Egq. (8)
restated as

may be

(®1x841,*D 1 551) §k1=61j 9

Before proceeding further it is worth
noting that the fourth order tensor
Dijkl is,in all 1likelihood, a singular

tensor (i.e. the inverse of the
associated matrix may not exist) .Such
singularities may be the results of the
reinforcement constitutive matrix (e.g.
when no reinforcement is present in one
of the directions x, ) or could be

introduced if the sand is assumed to be
a rigid plastic (rather than an elastic
plastic) material.

+3,.8

1k 31
a non singular tensor.It is also an
antisymmetric tensor since it is the
sum of a symmetric tensor {the unit

tensor ﬁuﬁjl) and the product of a

symmetric (the Cuxl)
antisymmetric tensor (the tensor of the
elasto-plastic coefficients in the
constitutive relation for sand).

The tensor Kijkl=Dijxl is, however,

tensor and an

Since Kijkl is deemed to be non singular
then Eq. (9) may be rewritten as

v =1,
{s}=IK] {o} (10)
But from Egs. (3) and (4)

{€}=1H] {8}
where [H]=E ,+h(39/ds ) (9£/3s,,) . Thus,

. -1
{e}=[B] [K] {0} (11)
which 1is the desired relationship
between the stress and the strain

tensor for the reinforced sand medium.

The various operations outlined above
of a
simple example in the next section.

AXIAL LOADING OF AN ELEMENT REINFORCED
IN A DIRECTION NORMAL TO THE AXIS OF
THE MAJOR PRINCIPAL STRESS

Consider a sample of reinforced sand
subjected to a state of axial loading

whereby 0,= 0, remains constant with o,

increasing (triaxial compression test).
The reinforcement is assumed to be of
the sheet type with its plane normal to

the direction of action of cl,Fig.(G).
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Fig. (6) Transversely reinforced
sand in triaxial loading state

Here n, =0 and it is assumed that n,=n,.

This assumption is made only in view of
the fact that otherwise it would be
necessary to deal with a general state
of stress for' the sand phase: a
discussion which is outside the space
limitations of the present paper.

For the reinforcement phase
matrix assumes the simple form;

the C

{3=I[Cl{e}

0 0 G
[c]={0 En ©
0 0 En

referring to principal directions.

The sand is assumed to be rigid plastic
and for convenience the functions f,¢

and h shall be expressed in terms of o,
and o, (= 02). In Fig.(7) are shown the

f=const. and ¢=const. curves associated
with compression loading (6,> G,) .

If the state of stress experienced by
the element is within the zone bounded
by th two radial lines marked "critical
state 1line®™ and the "hydrostatic
consolidation line™ then the sample
contracts upon loading. Furthermore if
the state of stress is to the right of
the "k, consolidation line" the strain

components 82(= 83) would be positive

(equivalent to a negative Poisson's .

ratio). This zone .(i.e the zone bounded
by the radial 1lines marked Xk,
hydrostatic consolidation) is absent in

preloaded or compacted samples and
presents some peculiar behaviour.For

and
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Failure line

Critical state line

'ko consolidation
line

Hydrostatic
consolidation line

Fig.(7)- Yield loci and plastic
potential curves for sand in
triaxial compression. -

example it may be shown that a solution
to certain type of problems may not
exist at all when working in this zone
of the stress space and assuming rigid
plasticity. :

If the state of stress is within the’
zone bounded by the radial linesmarked

"failure™ and "critical state" then a
loading of the samplc produces
expansion,

Now the matrix relating the strain rate

tensor to stress rate tensor [[E] of
Eqg.(11)] for the sand is;
£ .¢,1 ) ¢.2 £393
h+|£19,, . 29, £39,;
£19,1 £.9, £39,,

Multiplying the above two matrices ,
adding the unit matrix [1] results the
matrix [K] which has an inverse;

. 1+ 0 0
IS(232':|>,2+f.3‘1?3)
—_— 1+
det -ﬁf.lq),Z BEa ¢'3 - =Bf3ds
—Bi1Q3 -B£,9; 1+
_ ﬁﬁz@z_



where for convenience 0f/dc, has been
shown by f,,,3¢/30, by ¢,and so on,

det=l+B(f'2¢ﬂ+f,3¢3) and P=Enh.
In a conventional triaxial test

0700 f,=f; and ¢, =9, .

Therefore the the principal components
of sy are obtained from the relations

3

1= 6 (a)
o Bos - } (12)
522553377 G, det G, (b)

remembering that for the particular
type of loading envisaged f= 01/63 and

hence 3f/80}=f,1=1/03.

From Eq. (12,a) it is seen that the rate
of increase of sand stress in the axial
direction is equal to the axial stress
imposed on the soil. This is indeed as
expected since no reinforcements exist
in the axial direction.The rate of
increase of s,;; on the other hand is a

function of the position of the stress
point sijin the stress space, Fig. (7).

If the stress point is in the zone
bounded by k, and hydrostatic lines the

component ¢ , is positive and hence from

Eq.(12,b) there will be a decrease in
the magnitude of s,,.This is tantamount

to saying that when loading in this
zone ras far as the sand 1is
concerned,a decrease in the confining
pressure 1is experienced. This would
lead to larger axial strains that when
the soil is tested in the wvirgin
state.This point whilst of some
theoretical interest is unlikely to be

of great practical value since as:

mentioned before preloaded or compacted
soils do not exhibit such behaviour.
Once the state of stress in the sand
passes to a position on the left of the

k, line ¢ ,<0 and hence the rate of
change of s;; is positive, Eq.
(12,b) .The soil is progressively

getting stiffer ( by virtue of the
increase in the confining pressure s,,)

and hence the magnitude of both axial
and lateral strains would fall below
the values measured ~for the non
reinforced sand.

=]
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