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1 INTRODUCTION  

As geosynthetic reinforcements are made of polymer, their load-strain-time behaviours have been among 
serious engineering concerns, which led to a number of systematic studies in the past. These studies re-
vealed that geosynthetic reinforcements exhibit: i) dependency of the rupture tensile strength on the strain 
rate, ii) creep deformation under sustained constant loading, iii) load relaxation at a fixed strain, and iv) 
tensile load jump upon a step increase or decrease in the strain rate. These facts imply that the load-strain-
time behaviours of polymer geosynthetic reinforcements are rate-dependent. These trends of rate-
dependent behaviour were successfully simulated with a non-linear three-component (NTC) model (e.g., 
Hirakawa et al. 2003, Kongkitkul et al. 2004, 2007a, 2007b, 2010, 2014, Ezzein et al. 2015, Shi et al. 
2016) (Figure 1a). By the framework of NTC model, Tatsuoka et al. (2008) showed that, for geomaterials 
(i.e., soils and rocks), there are four basic viscosity types, which are Isotach, Combined, TESRA, and 
P&N (Figure 1b). For geosynthetic reinforcements, most of them exhibit Isotach viscosity, while only 
with PET geogrid the Combined viscosity (Hirakawa et al. 2003). 

The implementation of NTC model was limited to self-coding computer program (e.g., Ishihara 2000, 
Nishi 2002). It was implemented into MS Excel using VB code for the first time by Kongkitkul et al. 
(2014), aiming to help the readers to understand how the model works so that they can further modify the 
code for their specific problems. The code and simulations are, however, limited only to Isotach viscosity, 
although various loading histories including changes in the strain rate, creep, and stress relaxation were 
included. In view of the above, the present study aims at development of algorithms and VB source code 
for MS Excel for more general viscosity types to fulfil the ability of NTC model. Simulations of load-
strain-time relations of geogrids that exhibit Isotach and Combined viscosities are also presented. 
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                         a)                                   b) 

Figure 1. a) Non-linear three-component model modified for polymer geosynthetic reinforcement (modified from 
Hirakawa et al. 2003); and b) Four basic viscosity types of geomaterials (modified from Tatsuoka et al. 2008) 

2 CONSTITUTIVE MODEL OF NON-LINEAR THREE-COMPONENT MODEL 

A NTC model (Figure 1a) was used to simulate the load-strain-time behaviours of geosynthetic rein-
forcements (e.g., Hirakawa et al. 2003, Kongkitkul et al. 2004, Kongkitkul et al. 2007a, Peng et al., 2010, 
Kongkitkul et al. 2014, Chantachot et al. 2016). As this issue is explained very in details in the literature, 
only the core of the theory is explained below. 

The model consists of three components, i.e., elastic, inviscid, and viscous components (Figure 1a). 
Tensile load (T) is decomposed into inviscid load (T f ) and viscous load (T v ), while strain rate ( ) into 
elastic strain rate (

e ) and irreversible strain rate ( ir ), as follows: 

f vT T T= +   (1a) 

e ir  = +   (1b) 

2.1 Elastic component 

Elastic strain rate (
e

 ) is determined using a hypo-elastic model. In so doing, the equivalent elastic stiff-
ness (keq) is a function of instantaneous tensile load (T) as: 

/ ( )e

eqT k T =   (2a) 

where: T  is the tensile load rate; and keq(T) is the tensile load-dependent tangential stiffness (Hirakawa 
et al. 2003, Kongkitkul et al. 2004, 2007a, 2012) that can be expressed as: 

( ) ( / )b

eq eq0 0k T k T T=   (2b) 

where: T0 is the reference tensile load; keq0 is the value of keq when T = T0; and b is a constant.  

2.2 Inviscid component 

The inviscid load component (T f ) is expressed as a function of irreversible strain (εir ) (Di Benedetto et al. 

2002, Tatsuoka et al. 2002, 2008). The T f - εir relation, which is also called the “reference load-strain 

curve”, is highly nonlinear for most geosynthetic reinforcements. Generally, it is recommended to use the 

polynomial function (Hirakawa et al. 2003) as follows: 

9

1

( )f ir j

j

j

T a 
=

=    (3) 

where: aj (j = 1 to 9) is the coefficient for term j.  

2.3 Viscous component 

The viscous load (T v ) is generally a function of current irreversible strain (εir ), its rate ( ), and strain 
history (hs), depending on viscosity type as described below. 

ir
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2.3.1 Isotach viscosity 

With Isotach viscosity, the stress jump upon the strain rate change is persistent when the irreversible 
strain increase (Figure 1b). The Isotach viscous load ( v

isoT ) is a function of instantaneous εir and , while 
independent of hs as follows: 

( , ) ( ) ( )v ir ir f ir ir
iso vT T g   =    (4a) 

where: T f is inviscid load (Eq.(3)); and gv is viscosity function which can be expressed as follows: 

( ) ( ) 1 exp 1 / 1 ( 0)
m

ir ir ir

v rg     =  − − + 
  

  (4b) 

where: α, m and 
ir

r
  are the positive material constants depending on polymer type. 

2.3.2 TESRA viscosity 

With TESRA viscosity type, the stress jump by a stepwise change in the strain rate decays with an in-
crease in εir eventually approaches zero (Figure 1b). The TESRA viscosity load (

v

TESRA
T ) can be expressed 

as: 

( )

1

( )
( )

d( , , )
ir ir

ir

v ir ir v

TESRA s iso
irrT h T

  

 



 

−

=

 
 

=      (5a) 

where:
v

isodT  can be determined by differentiating Eq.(4a); 
1

ir  is εir at the start of loading where the vis-

cous effect is zero; τ is εir at which the viscous load increment vd
iso ( )

V


 
 

 takes place; and [r(εir)](εir- τ) is a 

positive constant lower than unity called the decay function. The r(εir ) can be expressed as follows: 

( ) cos ,  for :  ( )
2 2

n
ir

i f i fir ir ir

f

r r r r
r c r r

c


   

 + −  
= +   =  

   

  (5b) 

where: ri, rf, c and n are material constants. The complex integral form of Eq. (5a) can be approximated 
by the incremental form (Tatsuoka et al. 2008) as follows: 

( ) ( ) ( )
/2

( ) ( )( , , ) ( , )
v ir ir v ir ir

TESRA s iso

ir ir
v ir ir

T r rTESRA
i

T h T
 

    
 

 +     (5c) 

2.3.3 Combined viscosity 

With Combined viscosity, similar to TESRA viscosity, the stress jump by a step change in the strain rate 
decays with the increasing εir. However, the decayed stress jump is only partially (Figure 1b). It can be 
described that the combined viscous load (

v

com
T ) consists of 

v

iso
T  and 

v

TESRA
T , which can be expressed as: 

( , , ) ( , ) [1 )] ( , , )( ) (v ir ir ir v ir ir ir v ir ir

com s iso TESRA s
T h T T h        =  + −    (6a) 

where θ(εir ) is the combined parameter which can be expressed as: 

( ) cos ,  for :  ( )  
2 2

n
ir

i f i fir ir ir ir

fir
r







    
      



 + +  
= +   =  

   

  (6b) 

where: θi, θf,
ir

 and nθ are material constants. When θ = 1.0, Eq.(6a) returns to Eq.(4a) for Isotach viscos-

ity, and when θ = 0, returns to Eq.(5c) for TESRA viscosity. Hence, the viscous load for all viscosity 

types can be expressed in a general form as follows: 

( , , ) ) ( , ) [1 )] ( , , )( (ir ir ir v ir ir ir v ir ir

s iso TESRA s

v
T h T T h        =  + −    (6c) 

3 IMPLEMENTATION OF EQUILIBRIUM EQUATIONS AND ALGORITHM 

Simulation can be performed incrementally. That is, suppose that the values at the current stage i are 
known. Then the values at next step, stage i + 1 (unknown) can be obtained by iterating ir so that its value 

ir
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satisfies convergence of an equilibrium equation at stage i + 1 (n.b., selection of the equations depends on 
simulation mode; ML, SL, SR where: ML = monotonic loading, SL = sustained loading, and SR = stress 
relaxation). By repeating this procedure from the start of loading, the full time histories of all variables 
can be obtained. It can be postulated that the iteration of  is the main key of this model. As a result, 
all the equilibrium equations are expressed in terms of ir  with subscript [i] and [i + 1] for the stages i 
and i + 1, in order to compile for a computational source code and make easy understanding.  

3.1 Expressions of equilibrium equations 

Suppose that stage i is already in equilibrium. Now the value of ir  that satisfies the equilibrium equa-
tions at stage i + 1 is to be determined. Tensile load equilibrium at stage i + 1 can be derived from Eq.(1). 
The total load T can be determined either from the elastic component (Te) or summation of T f and T v 
(Figure 1a), as follows. 

[ 1] [ 1]i i

eT T+ +=   (7a) 

[ 1] [ 1] [ 1]i i i

f vT T T+ + += +   (7b) 

Te at stage i +1 can be determined from Te at stage i added by tensile load increment as follows. 

[ 1] [ ]  [ 1] [ 1] [ 1] [ 1]( )-e e ir

i i eq i i i iT T k dt + + + + += +     (8) 

T f at stage i + 1 can be calculated from Eq.(3): 

( )
9

[ 1] [ ] [ 1] [ 1]

1

j
f ir ir

i j i i i

j

T a dt + + +

=

=  +    (9) 

T v at stage i + 1 can be determined from Eq.(6c), Eq.(4a), Eq.(4b), Eq.(5b), Eq.(5c), respectively: 

[ 1] [ 1]  [ 1] [ 1]  [ 1][1 ]v v v

i i iso i i TESRA iT T T + + + + +=  + −    (10a) 

 [ 1] [ ]  [ 1]  [ 1] [ 1];  [1 exp{1 ( / 1) }]v f ir ir m

iso i i v i v i i rT T g g   + + + + +=  =  − − +   (10b) 

/2

 [ ]  [ ] [ 1]  [ 1] [ 1]  [ 1]  [ 1]  [ ]( ) [ ] ( ) ;  
ir irv v ir v ir v v v

TESRA i TESRA i i iso i i iso i iso i iso iT T r T T T T   

+ + + + +=  +    = −   (10c) 

3.2 Solving OF EQUILIBRIUM EQUATIONS AND ALGORITHM 

For each mode of simulation, two equilibrium equations are prepared for: i) eT T= (feq1), and ii) 
f vT T T= + (feq2). These equilibrium equations are expressed in terms of [ 1]

ir

i + . Then they are solved for 

[ 1]

ir

i + that satisfies e f vT T T T= = + , of which the following condition is satisfied. 

[ 1] 1 [ 1] 2 [ 1]
)( ( ) ( ) 0ir ir ir

i i i
f feq feq  

+ + +
= −    (11) 

After setting the above-mentioned condition, an iteration process shown in the flowchart (Figure 2) is re-

quired to find the root. Figure 2 shows algorithm used in the simulation described in the present study. 

Bisection method was implemented to find [ 1]

ir

i +  that make convergence at stage i + 1, which can be sat-

isfied when [ 1])( ir

if  + approximately to zero or is smaller than 10-5 % or other values set by the user. 

There are three simulation modes implemented (i.e., ML, SL, and SR). Simulation in each mode 

requires two equilibrium equations as described earlier. For simulation in ML and SR modes, the total 

strain rate [ 1]

ir

i +  is used as driving parameter for the reasons that: i) [ 1]

ir

i + is constant for a time interval in 

ML mode; and ii) [ 1]

ir

i + is zero for SR mode for a time interval. By substituting Eq.(7b) and Eq.(8) into feq1 

and feq2 of Eq.(11), the following equilibrium equations are obtained. 

1 [ 1] 1 [ 1] [ 1]
( ) ( )ir ir e

ML i SR i i
feq feq T 

− + − + +
= =

  (12a) 

ir
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2 [ 1] 2 [ 1] [ 1] [ 1]
( ) ( )ir ir f v

ML i SR i i i
feq feq T T 

− + − + + +
+= =   (12b) 

[ 1] [ 1] [ ] [ 1] [ 1]( ) 0( ) ( )ir ir e f v

ML i SR i i i if f T T T + + + +− + = =   (12c) 

For SL mode, as the total load for a time interval does not change, the total loads at the previous and cur-

rent stages are the same, and thus, the following can be expressed: 1 [ 1] [ ]
( )ir

i i
feq T

+
= and 2 [ 1] [ 1]

( )ir

i i
feq T

+ +
= . 

In the present study, T[i] and T[i+1] are obtained from T e and T e + T v, respective, as follows. 

1 [ 1] [ ]( )ir e

SL i ifeq T− + =
  (13a) 

2 [ 1] [ 1] [ 1]( )ir f v

SL i i iTfeq T− + + ++=   (13b) 

2 [ 1] [ ] [ 1] [ 1]( ) 0( )ir e f v

SL i i i iT T Tf − + + +− + =   (13c) 

 

 
Figure 2. Algorithm of VB syntax implemented for simulation with NTC model in the present study 

The algorithm newly implemented into VB syntax consists of nine parts as shown in Figure 2. Part a) is to 

record the material properties and the simulation history parameters. Next, in Part b), all the variables 

used in the simulation are initialized with zero. Then, in Part c), all the parameters are arranged such that 

they are ready for iteration process, that is, they are properly arranged to make the source code easy to ed-

it. After that, Part d) is to set up the equilibrium equation (described in Section 3.2) that suits the specified 

simulation mode (e.g., Tables 2 and 3). Part e), which is the iteration process, is to find the root value of 

[ 1]
ir
i +  that makes convergence of the equilibrium equation. The limit value of iteration step and iteration 

precision can be set via MS Excel interface (Figure 3). Then, Part f) is to calculate all the other variables 

from the obtained [ 1]
ir
i +  and record them into the “Result.txt” file. Next, in Part g), it is to check whether 

the “time” at the stage i + 1 is equal to the end time (tend). If the condition in Part g) is false, Part h) is im-

plemented to recall the necessary variables at stage i + 1 from Part f), and then set as for stage i for the it-

eration process. Upon the condition in Part g) is true, Part i) is to finalize the “Result.txt” file and termi-

nate the program. 

3.3 Input parameters and simulation steps 

3.3.1 Input parameters 

There are two types of input parameters: i) material properties; and ii) simulation history parameters. The 
material properties, which are according to the elastic, inviscid, and viscous bodies (Figure 1a) as de-
scribed in Sections 2.1, 2.2, and 2.3, respectively, can be determined by sophisticated tensile loading tests 
(e.g., Hirakawa et al. 2003, Kongkitkul et al. 2004, 2007a, 2012). The simulation history parameters can 
be prepared by the measured time history of either total strain rate, creep period, or stress relaxation peri-
od for ML, SL, or SR mode, respectively. Simulation of load-strain-time behavior subjected to complex 
loading histories can be done by combination of simulation-history parameters of ML, SL and SR modes. 
In this paper, both the material properties and simulation history parameters for respective simulations 
were taken from the work by Hirakawa et al. (2003). The material properties are tabulated in Table 1. Ta-
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bles 2a and 2b show the simulation history parameters used in the simulation of HDPE and PET geogrids 
used in the present study. Note that the numbers for the “Event” column of 1, 2, and 3 in Tables 2a and 2b 
stand for ML, SL, and SR modes, respectively. 
 
Table 1. Material properties of HPDE and PET geogrids implied in the present study   

NTC  

Component 
Symbol HDPE PET 

 NTC 

Component 
Symbol HDPE PET 

Elastic eq0k
 15 kN/m/% 25 kN/m/% Viscous 

ir( )  Contant Constant 

  b  0 0 (combined  i  1 0.8 

  0T  1 kN/m 1 kN/m parameter) f  1 0.8 

Viscous   1.6 0.4  n  0 0 

(viscosity  m  0.085 0.12  0.θ
ir  1 % 1 % 

 function) 
ir
rε  2.10E-04 %/s 1.00E-05 %/s Inviscid 1a  13.39596 4.99898 

Viscous 
ir( )r   Contant Varies  2a  -4.96765 -1.17026 

(decay  ir  1 1  3a  1.1236 0.14392 

function) fr  1 0.15  4a  -0.11691 -0.0081 

 c  1 % 0.4 %   5a  0.0045 0.00023 

  n  0 0.6   6a  0 -2.7814E-06 

      7a  0 0 

      8a  0 0 

      9a  0 0 

 
Table 2. a) (left) Combination of simulation history parameters for HDPE geogrid in the present study; and b) 
(right) Combination of simulation history parameters for PET geogrid in the present study  

Event tint(sec) tend(sec) Value  Event tint(sec) tend(sec) Value 

1 0 128 0.005  1 0 143 0.01099 

1 128 3323 0.00031  1 143 1148 0.0014 

1 3323 3367 0.02615  1 1148 1254 0.01347 

1 3367 7973 0.00052  1 1254 9927 0.000125 

2 7973 53075 0  1 9927 10065 0.01304 

1 53075 57100 0.00036  1 10065 11100 0.0012 

1 57100 57553 0.00336  2 11100 14709 0 

5 57553 100806 0  1 14709 17690 0.00097 

1 100806 101266 0.00182  5 17690 21300 0 

     1 21300 24795 0.00085 

     1 24795 25134 0.00831 

3.3.2 Simulation steps 

The present study adapts some features of user interface from the original computer program developed 
by Nishi (2002) in Microsoft Visual C++. Simulation steps of the VB program developed in the present 
study can be explained as follows. 

i) Enter the values of material properties on MS Excel interface as shown in Figure 3, prepare a 
“ControlFile.txt” file that records the combination of simulation history parameters (Tables 2a 
and 2b) and place in the same folder as for the VB program. 

ii) Press “Run” button on MS Excel worksheet interface so that the VB will operate. 
iii) Simulation result is automatically created as “Result.txt” file in the same folder as for the VB 

program. 
iv) The “Result.txt” file can be imported to MS Excel interface by using “Paste data” button on 

MS Excel worksheet. The simulation result is reported with 17 columns. In addition, this re-
sult can be deleted by pressing at “Clear” button. 
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Figure 3 MS Excel interface for simulation with VB program developed in the present study 

4 SIMULATION 

Figure 4a compares the tensile load-strain relations of HDPE geogrid among the experiment, the simula-
tion by Hirakawa et al. (2003), and the simulation by VB in the present study. Similarly, Figure 5a com-
pares the tensile load-strain relations of PET geogrid. Figure 4b compares time histories of creep strain 
increment (stages h to i in Figure 4a), among the experiment, the simulation by Hirakawa et al. (2003), 
and the simulation by VB in the present study, for HDPE geogrid. Similarly, Figure 5b compares time 
histories of creep strain increment (stages i to j in Figure 5a), for PET geogrid. It can be clearly seen that 
not only all the rate-dependent tensile load-strain behaviours but also time histories of creep strain incre-
ment during SL and tensile load decrement during SR are successfully simulated by the VB newly devel-
oped in the present study. 

 
Figure 4. a) (left) Tensile load-strain relations; and b) (right) Creep strain-time relations for HDPE 

 
Figure 5. a) (left) Tensile load-strain relations; and b) (right) Creep strain-time relations for PET 
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5 SUMMARY 

Most polymer geosynthetic reinforcement exhibit rate-dependent tensile load-strain behaviours due to the 
material viscous property. Among various types of viscosity, Isotach type is found relevant with most 
polymer types, while Combined type with polyester. A non-linear three-component model was success-
fully used to simulate the rate-dependent tensile load-strain behaviours of geosynthetic reinforcement, 
taking into account not only various viscosity types but also the dependency of the elastic stiffness with 
the tensile load. In the present study, equilibrium equations for various simulation modes including: mon-
otonic loading (ML), sustained loading (SL), and stress relaxation (SR), are detailed and explained. These 
equations are used for iteration process of the root value of irreversible strain increment at the current 
stage in the simulation. Then, the source code for the simulation was newly developed in VB source code 
built-in MS Excel. The simulation procedures as well as the algorithm and working principles are also ex-
tensively explained. Simulations were performed on two tensile loading test results, and compared with 
the simulation results by the previous research. The new simulation results showed a very good agree-
ment with both the experiment and previous simulation results. Thus, it can be concluded that, with the 
newly developed VB source code, the rate-dependent load-strain behaviours observed during constant 
strain rate ML, SL and SR in experiments can be successfully simulated by the algorithm developed in 
this study. 
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