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Bearing capacity analysis of reinforced ground
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ABSTRACT : Stability analysis of soil structure system is newly proposed which can take account of
. redistribution of soil structure interaction force. Two cases of soil structure systems are dealt with. One
is a raft foundation and the other, a reinforced slope. The effect of mechanical properties of structures
such as the rigidity and limit strength on the system stability is investigated through parametric studies.
The soil structure interaction at the limit state is illustrated and discussed with the failure mode of the

soil structure system.

1 INTRODUCTION

Ground reinforcement technique has been posi-
tively adopted for stabilizing soil structures in
practical constructions. However, the design
methods for ground reinforcement has been devel-
oped mostly based on experimental works. The
slice method is so far.widely used for stability as-
sessment of reinforced soil structures. It solves
equilibrium equations on sliced blocks with the
assumption that the forces between blocks are at
the limit state. The reinforcement effect is consid-
ered as forces working on blocks, the magnitudes
of which are assumed prior to computation based
on Lhe (ensile strength or the pull out resistance
of reinforcements. The soil structure interaction
force, however, varies with the behavior of soils
and structures. It should be determined when the
boundary value problem of the soil structure sys-
tem is solved.

This study presents a stability analysis for soil
structure system based on the shakedown theo-
rem(Koiter, 1860). With the use of generalized
stresses, the stability of soil structure system is
‘assessed by taking account of the soil structure in-

. teraction as the internal force. Two cases of soil
structure systems are dealt with in this study. One
is araft foundation and the other is a soil reinforce-
ment with finite rigidity. They are modeled as a
beam and a truss, respectively. The shakedown
analysis is usually employed for the stability as-
sessment against repeated loads. But, it is adopted
here to consider the effect of mechanical proper-
ties of reinforcement on the stability. The effect of
rigidity and limit strength of reinforcement on the
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stability will be investigated. The soil structure in-
teraction force at the limit state will be discussed
with the failure mode of reinforced slope.

2 STABILITY ANALYSIS OF SOIL STRUC-
TURE SYSTEM

The shakedown analysis is an expansion of the
limit analysis. The feature of it is to deal with
the residual stress which corresponds to the plas-
tic strain. The residual stress is defined as the dif-
ference between the true stress o and the elastic
stress o¢ such as '
o =0o—c°. (2.1)
o and o° satisfy the equilibrium equation respec-
tively so that o is a self-equilibrate stress. The
soils and structures are modeled as the elastic per- -
fectly plastic materials in this analysis.

2.1 Melan’s Theorem with Generalized Stresses

The Melan’s theorem assures that a soil structure
system is safe against the external force F(¢t) if
any time independent residual stress &", 77" can -
be found everywhere in the structure satisfying

fle*(#)) <0
g(m*(2)) <0

o(t) +7 =o°(t),

m(t) + m" = m(t), (2.2) |

where f and g are yield functions of soils and struc-
tures, respectively. m is a generalized stress for
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structures such as an axial force in a truss and a
bending moment in a beam. If a structure is safe
for applied load, the behavior of it is proven to
shakedowns to be elastic for repeat of load.

2.2  Shakedown Analysis with Linear Program-
ming ' '

The Melan’s theorem gives a lower bound for the
exact solution on the stability so that it is for-
mulated as a maximization problem(Maier,1969).
When the external forceis a monotonically increas-
ing force, the Melan’s theorem coincides with the
lower bound theorem in the limit analysis. With
the use of linear yield functions, Eq.(2.2) is de-
scribed as follows:

}—K
pr{me b+

Thefinite discretization on stresses is conducted in
the above equation. The matrix N is a assemble of
the outward normal vectors to the yield function
and K, a assemble of yield limits corresponding to
outward normal vectors. The suffixes ”0” and "e”
mean the initial and elastic components of stresses.
The bearing capacity analysis against the external

o’

) -x<o

(2.3)

m

- force F' can be formulated with a load factor o

such as
T[] Oo r[ O
N {mo}+aN {me}
+NT{;}—K§0
s =max |« o
(%)
=T
BT{%,}=0

(24)

B is a matrix between the stress vector and the

_ external force vector. The second and third equa-

tions describe the equilibrium equations on elastic
and residual stresses, respectively. It is noted that
the redistribution of stresses is considered with the
residual stresses which are determined by solving
the boundary value problem.

3 ULTIMATE BEARING CAPACITY OF
FOUNDATION WITH FINITE RIGIDTY

The applicability of the proposed analysis is dis-
cussed by evaluating the ultimate bearing capacity
of raft foundation with finite rigidity.

3.1 Boundary Conditions and Soil Constants

The bearing capacity analysis is conducted against
a homogeneous load applied on raft foundation on
clayey soils. Firstly, the accuracy of the proposed
analysis is examined in comparison with the Hill’s
solution under the plane strain condition. The
soils is modeled as the Mises material with the
undrained shear strength. The soil constants em-
ployed in this analysis are exhibited in. Table 1.
Fig.1 shows the employed boundary condition and
finite element mesh.

Table 1. Soil constants.

E 1000.0 kN/m? v 033333
¢, 10.0 kN/m?
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Fig.l Boundary condition and finite ele

ment
mesh. T

3.2 Effects of Mechanical Properties of Founda-
tion

The raft foundation is modeled as a beam and the
effects of both bending rigidity, £ and limit bend-
ing moment, M, on the bearing capacity is inves-
tigated. Fig.2 illustrates the relationship between
the ultimate bearing capacity and limit bending
moment M,. The bending rigidity is set constant
as EI = 8.3 x10°, 8.3 x 108 kN-m2. In the case of
flexible foundation as EI = 8.3 x 10° kN-m? the
ultimate bearing capacity is obtained to be con-
stant as 5.24c, kN/m? It is close to the Hill's
exact solution (7 + 2)c, kN/m? and the accuracy
of computation is comparatively well. In the case
of rigid foundation as EI = 8.3 x 108 kN-m? the
ultimate bearing capacity is same as that of flexi-
ble foundation when the limit bending moment is
high. However, it drastically reduces as the limit
bending moment is lower than M, = 1.0 x 10*

~ kN-m. It is lower than the Hill’s solution and then,
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Fig.2 Relationship between ultimate bearing
capacity and limit bending moment.

the ground is thought not to be failed. It is due
to foundation failure because the stress tends to
concentrate on the edge of foundation when the
bending rigidity of foundation is high.

4 ULTIMATE BEARING CAPACITY OF RE-
INFORCED SLOPE

The ultimate bearing capacity is assessed for raft

foundation on the top of reinforced slope. The
rigidlty of foundation is set rigid as ET = 8.3 x 108
kN-m?2 The boundary condition and finite element
mesh are exhibited in Fig.3. The reinforcement is
installed as shown in the figure and it is modeled
as a truss element, the width of which is 0.01m.
The material constants are shown in Table 2.

4.1 Effect of Mechanical Propertzes of Reinforce-
ment

Fig.4 represents the relationship between the rein-
forcement effect and the tensile strength of rein-

forcements. The reinforcement effect is defined as .

the ratio of the ultimate bearing capacity to that
of no reinforcements. The reinforcement rigidity is
set constant as £ = 1.0 x 102, 1.0 x 10! kN/m? in
the figure. In both cases, the reinforcement effect
is obtained higher with the tensile strength of re-

inforcements. However, it varies during the range :

of tensile strength oy from 0 to 1.0 x 10° kN/m?

and keeps constant even if the tensile strength of
reinforcement is higher than'1.0 x 105 kN/m?2 It

is noticed that there is a limited range of tensile
strength on reinforcement to change the reinforce-
ment effect largely. In these computations, the
reinforcement effect is obtained
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Fig.3 Boundary condltlon and finite element:
mesh.

Table 2. Soil constants.
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Fig4 Reinforcement effect for tensﬂe strength of
reinforcements.

at most about twice.

Fig.5 exhibits the rela.tlonshlp between the re-
inforcement effect and reinforcement rigidity. It is
found that the reinforcement effect can not be ex-
pected when the tensile strength of reinforcements
is low. Then, the effect of reinforcement rigidity
is negligible. In the case of the tensile strength as
1.0 x 10° kN/m?, the reinforcement effect is large
and varies depending on the tensile rigidity of rein- -
forcements. The tendency of reinforcement, effect
with tensile rigidity is the same as that with ten-
sile strength in Fig.4. There is observed a limited -

‘range of tensile rigidity where the relnforcement

649

effect varies largely.
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Fig.5 Reinforcement effect for tensile rigidity of
reinforcement.
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Fig.6 Boundary condition and finite element
mesh.

4.2 Reinforcement Configuration and Bearing
Capacity

The reinforcement effect on ultimate bearing ca-
pacity is also investigated for configuration of re-
inforcements. The employed finite element mesh is
shown in Fig.6, the boundary condition of which is
the same as Fig.3. The tensile strength and rigid-
ity of reinforcements are set as oy = 1.0 x 107
kN/m? and E = 1.0 x 10° kN/m?2 Firstly, the ul-
timate bearing capacity is computed for one rein-
forcement. The installed location of reinforcement
is changed as low, middle and high as shown in
Fig.6. The case of three reinforcements is also ex-
amined. The length of reinforcements is changed
as 1.0, 2.0, 3.0, 4.0, 5.0 and 7.5m to investigate a
reinforcement effect. The results are illustrated in
Fig.7 all together. The reinforcement effect shows
higher with the reinforcement length. In the case
of one reinforcement, the reinforcement effect is
obtained higher when it is installed at the upper
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Fig.7 Reinforcement effect of configuration.

Fig.8 Yielded element distribution of slope
without reinforcements.

location. However, it is much higher in the case of
three reinforcements in comparison with the case
of one reinforcement. On the reinforcement length,
there is a threshold value that the reinforcement
effect becomes constant even if the reinforcement
length is longer. That is about 5.0m in each case
in these cases. It indicates there exists an optimal
length of reinforcements.

4.3 Failure Mode and Azial Stress Distribution o;
Reinforcement

The effect of reinforcement on failure mechanism
is investigated with marking yielded elements ob-
tained in stability analysis. Fig.8 shows the yieldec
element distribution of the slope without reinforce:
ments. The Melan's theorem gives a lower bounc
on ultimate bearing capacity based on stress fielc
and not on kinematic field. But, the shaded ele
ments constitute a kind of failure zone as the same
as the velocity field in the upper bound theorem.
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(c) Reinforcement length L=7.5m
Fig9 Yielded element distribution in the case of
one reinforcement.

Fig.10 Yielded element distribution in the case

of three reinforcements. (Reinforcement length
L=75m)

651

Axial Stress (MN/mZ)

1 —L ] 1 1

0 1 2 3 4 5 6 7 8
Reinforcement Length (m)

(a) Reinforcement length Z=4.0m

Axial Stress (MN/m?)

001 23 45 67 8
Reinforcement Length (m)

(b) Reinforcement length L=7.5m
Fig.11 Axial stress distribution of remforcement
at the limit state.

Fig.9 exhibits the yielded elements when one rein-
forcement is installed. The length of reinforcement
is changed as 2.0, 4.0 and 7.5m. When the length
of reinforcement is small, there is not so much dif-
ference in failure zone in comparison with the case
of no reinforcement. But, it is found that the fail-
ure zone apparently expands with the length of
reinforcement. This might be the reason why the
ultimate bearing capacity gets higher. It is also



observed in Fig.10 which represents the yielded el-
ements in the case of three reinforcements. It is
noted that the failure zone is found to surround
the installed reinforcements and the soil elements
neighboring reinforcements stay within the elas-
tic state. The axial stress of reinforcement at the
limit state is exhibited in Fig.11 in the case of one
reinforcement of L = 4.0 and 7.5m. They are ob-
tained as the result of stress redistribution due to
soil structure interaction. In the case of L = 7.5m,
the peak axial stress is clearly observed at the up-
per and middle locations of reinforcements.

4.4 Effect of Foundation Rigidity

The ultimate bearing capacity is estimated for Fig.
3 with the reinforcement of L = 7.5m at the mid-
dle location in the slope. The rigidity of founda-
tion on which the load is applied is modeled as
EI = 8.3 x 10° and 8.3 x 108 kN-m? These two
might correspond to so-called flexible and rigid
foundations. The computed results are obtained
as Table 3. It is found there is a big difference in
ultimate bearing capacity which is not predicted
before computation. It indicates the importance of
consideration on the rigidity of foundation. Fig.12
represents the axial stress distribution of the rein-
forcement. In the case of rigid foundation, there
obtained high axial stress and the peak value.

Table 3. Comparison of ultimate bearing
capacities for foundation rigidity.

Flexible Rigid
Foundation  Foundation
EI (kN/m?) 8.3x10° 8.3x108
gr (kKN/m?) 64.9 392.8
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Fig.12 Comparison of axial stress distributions of
reinforcement for foundation rigidity.

5 CONCLUSIONS

The followings are concluded in this study.

1. The stability analysis of soil structure sys-
tem was proposed and the applicability of it was
examined through some numerical analyses.

2. The ultimate bearing capacity of raft foun-
dation was investigated for the rigidity and limit
bending moment of foundation. The ultimate bear-
ing capacity was shown to vary with mechanical
properties of foundation. When the limit bending
moment of foundation was low, the ultimate bear-
ing capacity drastically decreased. It is why the
foundation fails by itself. In the case of clayey soils,
there was little difference in the ultimate bearing
capacity with the foundation rigidity.

3. The ultimate bearing capacity of foundation
on the top of reinforced slope was estimated and
the reinforcement effect on the ultimate bearing
capacity was investigated by parametric studies.
The ultimate bearing capacity was shown to in-
crease with the tensile strength of reinforcement,
but, vary in the limit range of tensile strength,
oy =0~ 1.0 x 10° kN/m?.

The effect of reinforcement configuration on the
ultimate bearing capacity was also investigated and
the reinforcement mechanism was discussed with
the yielded elements obtained in the stability anal-
ysis. It was found that the yielded area surrounded
installed reinforcements and the soils neighboring
reinforcements stayed within the elastic state. The
axial stress distribution of reinforcements were also
illustrated.
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