Session 6C: Properties and Tests II

Second International Conference on Geotextiles, Las Vegas, U.S.A.

MORITZ, K. and MURRAY, H.

Road Research Institute of the FRG, Koln, Germany

Comparison Between Different Tensile Tests and the Plunger Puncture Test (CBR Test) Comparaison entre différents essais de traction et l'essai de poinçonnement CBR

As an integral part in the preparation of guidelines for the use of geotextiles in Germany, comparative tests with different test methods are carried out on non-woven fabrics. The objective was to select a suitable test method, and led to a programme which systematically evaluated the influence of different sample widths on the result of the strip tensile test. The tensile tests were carried out on two products from each of 8 producers from Germany and abroad. Both mechanically bonded and heat bonded nonwovens were included. The results of the series of tensile tests were statistically evaluated; standard deviation and coefficient of variation of breaking load and extension at break were recorded. The modulusat different load steps was calculated and typical differences between different types of fabric registered. The results were compared with fabric uniformity tests. Correlation with the results of the CBR test (plunger puncture test) commonly used in Germany make comparisons between the various tests for the highway engineer.

INTRODUCTION

Guidelines for the use of geotextiles in road construction are being prepared in Germany by a working party of the German Transport and Road Research Institute. During the course of the work, the suitability of standard textile tests for use in highway engineering was called in question. The Norwegians (1) had already answered this question in 1977 with the development of the CBR test, a test tailored to the needs of the highway engineer. Since 1980 this test has been increasingly been used in Germany for control purposes (2). The work described in this paper was intended to compare the results of different tensile tests as regards breaking load, extension at break and load/extension characteristics.

Dans le cadre le l'établissement d'une notice pour l'emploi de géotextiles on a étudié en République Fédérale d'Allemagne des non-tissés par des essais comparatifs à l'aids de différentes méthodes d'essai. Le but de l'étude a été de choisir une méthode d'essai convenable. Cet objectif a exigéun programme d'essais devant permettre d'explorer systématiquement l'influence de différentes largeurs des bandes de 100 - 600mm sur les resultats de l'essai de traction sur bande. Les essais de traction ont été effectués avec deux produits à chaque fois de huit fabricants du pays et de l'étranger. On a étudié les géotextiles aiguil-letés et thermopondés. On a réalisé une exploitation statistique des résultats recus de la serie d'essais de traction. Ont été déterminés, l'écart type et le coefficient de variation de la resistance à la déchirure ainsi que de l'allongement à la rupture. L'étude comprend la définition de le module pour differents niveaux de sollicitation et la présentation de dif-férences typiques constatées entre les différents procédés de fabrication. Les résultats ont également été comparés avec des études de l'homogénéité. Des correlations avec les résultats de l'essai de poinconnement (CBR) qui est usuel en RFA rendent les differents essais comparables et mènent au choix d'une méthode d'essai practicable en construction routière.

1.1 SELECTION OF THE GEOTEXTILES

Only non-wovens were included in the test program on two grounds:

- the use of geotextiles for separation and filtration in highway engineering in Germany is confined almost entirely to non-wovens. Wovens and composite materials are used only in special cases e.g. reinforcement or structure drainage.
- The CBR test cannot be used to compare different types of geotextile (wovens, non-wovens, composites).

Non-wovens currently available can be divided into 2 groups of polymers and 2 of production methods. The principal raw materials are polypropylene (PP) and polyester (PES), production methods heat bonded and mechanical bonded.

First tests with wide samples $(\underline{3})$ carried out on a mechanically bonded PES non-woven. In the programme described here, samples from a total of 8 producers were tested, covering all possible raw material/ production method combinations.

Table 1.

Producer	Product Name	Fibre Raw Merla and Type	Type of Bonding		
Hoechst	Trevita Spundary	PES continuous	mechanical		
ICI Fibres	Terra m	PP+PE continuous			
Chemie Line	Polyfelt	PP continuous	mechanical		
Nuue Fasert.	Terrafix	PES steple			
Sodoca	Sodoca	PP continuous	mechanical		
Fibertex	Fibertex	PP staple	heat + mach		
Lutravil	Lutradur	PES continuous	heat bonded		
Du Pont	Typur	PP continuous			

1.2 TYPES OF TEST

1.2.1 CBR TEST (PLUNGER PUNCTURE TEST)

The CBR test for geotextiles was first described by Alfheim and Sörlie (1), and Wilmers (2) compared the Grab Test with the CBR Test, now standardized in Germany as DIN 54307 E. The non-wovens reported on here were CBR-tested at the Building Materials Testing Station in Wetzlar in accordance with the DIN norm (ring diameter 150 mm, plunger diameter 50 mm, speed of penetration of plunger 60 \pm 10 mm/min).

1.2.2 TENSILE TESTS

The only standardized German tensile test for non-wovens which records both breaking load and extension is the strip tensile test DIN 53857 Part 2. Gauge length is 200 mm, sample width 50 or 100 mm and crosshead speed 50-200 mm/min. The considerable necking down of non-wovens in this test makes interpretation of their load/extension behaviour a doubtful matter (see (3).

Sissons (4) attempted to exclude the influence of necking by the use of spreader bars (sample size 200 x 200 mm, crosshead speed 20 mm/min). This test is considered rather too complicated in Germany, and the possible influence of the pins on the results has not been fully clarified.

Rigo and Perfetti (3) presented another means of reducing the influence of necking down. In a series of experiments they tested samples of an mechanically bonded polyester non-woven with widths of up to 800 mm, gauge length 100 mm and a crosshead speed of 50 mm/min.

Based on the above information, the following test programme was carried out in the Federal Highway Research Institute (BASt) in Cologne:

- Strip tensile tests in accordance with DIN 53857 Part 2
- tensile tests with 100mm gauge length, sample widths of 100, 200, 300, 400, 500 and 600 mm, and
- a crosshead speed of 50 mm/min.
- 1.3 SCOPE OF TESTING

For the <u>CBR tests</u>, 10 samples per product were tested (as laid down in DIN 54307 E), this representing a total of 1600 individual tests. The following were measured:-

- sample weight
- push-through force
- extension at 100, 500, 1000 N. push-through, and push-through minus 300 N
- additionally, after exceeding push-through force, extension at push-through minus 300 and 500 N.

At each configuration of the <u>tensile tests</u>, 5 samples per product were tested in machine and cross directions, this respresenting a total of 1280 individual tests. The following were measured:

- sample weight
- max. load
- extension at max. load
- neck down at break

The load/extension curve was plotted mechanically.

- 2 RESULTS
- 2.1 CBR TESTS

The results of the CBR tests which had been carried out by the beginning of March 1982 are presented in the following table.

Table 2.

Producer	Type	מס	٤	Weight	
A 521 - 7 1.		[N]	TOON	ΟĎ	[g/m2]
4	Tr. Sp. 200	2020	-12	69	201
TIDECIN	Tr. Sp. 500	5152	3	56	509
101	Terram 1000	-16-11	4	35	-136
101	Terram 4000	4173	2	36	342,
Chemie	Pulyfelt 15500	1476	7	48	775
Line	Polyfelt TS 700	2352	6	48	285
Naue	58 309	17.93	12	53	362
	ST 509	2824	8	55	571
Sodoca	AST 250	2090	3	75	281
	AST 420	30 88	4	88	428

Dia, 1 shows the typical shape of the load/deformation curves of a mechanically bonded and a heat bonded continuous filament non-woven in the CBR test.

Fig. 1 Load/deformation curves

2.2 STRIP TENSILE TESTS

The results of the different tensile tests are shown in tables 3 - 5.

Table 3. Breaking load (kN/m)

Long	Longth Emmi		12	200		100				
Width		[mm]	50	100	100	200	200	1/100	Se	
Product	type	Direction of test								
Trevira	100	mach	8,2	4,6	9,2	11.0	11	72,4	1	
Scunterad	200	cross	12,1	12.0	12,1	12.8	14,5	14.4	4	
-totogar -	5	mad.	0,5	23,2	20,3	24,1	253	26,4	23,1	
	300	cross	2.2	26.2	20,3	29.1	22.4	32,1	29,	
	1000	mach	6.2	8.4	7.9	94	9.7	9,5	9.9	
Terram	7000	cross	5.6	8.0	6.5	89	10.0	10.7	99	
	4000	mach.	21,9	22.8	22.9	25.9	29.2	20,3	31.	
		Cross	6.0	21.0	218	22.5	25.0	25.3	25.	
Polyfelt	TS 500	mach	8.1	2.5	9.9	tab	9.2	10,7	10.	
		cross	7.8	9.3	8.8	9,4	9.7	9.2	9.6	
	1:700	mach.	17.0	162	4.2	15:4	15.2	15.2	16.0	
		CTOSS	10	16.8	19.1	14.2	+3	15.9	17.8	
	\$1309	mach	3,8	46	3,7	45	5,4	4,5	5,1	
Terrofer		cross	9,5	ð.4	100	-10,9	5,7	-12	-11	
	51 509	mach.	7,9	?2	9,6	9,0	9.2	10,2	10.1	
		cross	124	4,1	5.6	35	16.6	77.7	17,1	
	AST	macri	10,4	4.9	11,8	1003	-2.9	4.2	12.9	
Sodora	250	Cross .	÷4	17,0	~3	No	-NIO	59	15,4	
	AST	moch.	190	706	21.6	.33	70.4	2.5	20.4	
	420	<1011	23.6	2.2	26.7	75 6	22.4	256	:::	

Table 4. Extension at break (%)

Length Emmi			2	00	100				
Width	Ľ	[m m]	50	100	100	200	300	1100	500
Product	Type	direction of test							
Trevira	2	mach.	55	25	79	68	73	25	70
Spunbona	200	Cross	58	67	80	64	67	65	63
	500	mach.	56	20	68	63	63	58	59
	500	61055	59	66	66	63	58	62	64
	1000	mach,	25	26	29	27	29	32	23
Perram	.000	cross	27	27	28	28	28	27	22
	4000	mad.	24	27	30	32	31	37	37
		Cross	28	25	26	28	28	28	3-7
0	FS 500	much,	52	81	98	85	82,	89	82
Polyfelt		CLOZZ	31	38	46	42	38	37	37
	75 700	mach,	60	75-	Tot	90	86	94	85
		CTOSS	40	36	59	49	46	44	50
	57 309	mach	45	76	64	65	60	57	55
Terrafix		CLOU	36	43	32	36	36	35	35
	SF 509	mach.	54	73	78	72	69	70	6,
		CTOSS	43	47	44	45	38	41	40
	AST	mach	81	105	107	23	98	94	13
Sodora	250	Cross	76	81	74	84	79	87	P.
	AST	made	86	100	141	1.11	-22	102	12
	420	cross	111	87	124	-123	-1-15	1.es	-14

Table 5, Neck down (mm)

Length [mm]		2	00	100					
Width	C		50	100	100	200	300	1,00	500
Product	Type	Direction of test							
Trevira	2	mach.	12	-15	29	132	226	325	423
Spunbond	200	Cross	15-	-13	42	137	238	327	436
	6	mach.	-13	25	39	139	232	226	423
	3.00	10055	-12	24	41	-736	235	326	417
	1000	mach.	38	83	57	753	253	357	47
Terram	1000	cross	37	85	57	-124	256	360	453
		mach.	32	87	68	-162	272	366	1.76
	4000	cross	35	89	76	-162	269	371	472
Polyfelt	TS 500	mach.	-12	22	44	130	220	322	421
		cross	14	29	51	-155	245	366	26
	7.7.	mach.	-15	27	59	-139	225	304	426
	13 100	cross	17	30	ste	155	257	366	410
	57 309	mach	-12	37	42	132	224	234	44,
Terrafix		CLOW	-18	36	58	158	249	359	464
	57 509	mach,	-17	35	44	+34	232	323	430
		cross	-19	39	58	-#5	264	3:9	46
Sodoru	AST	mach.	15	22	40	140	2-19	332	476
	250	Cross	12	32	57	+12	251	357,	44
	AST	mach	11	37	34	730	222	327	123
	420	cross	-15	33	24	137	234	340	447

Dia 2 shows the shape of three typical load/extension curves. To the mechanically and heat bonded fabrics in Dia 1 has been added the curve for a mechanically bonded staple fibre fabric.

Fig. 2 Load/extension curves.

3 EVALUATION

At the time of preparation of this report, mid-March 1982, the testing in the BASt had not yet been completed. Fabrics from five of eight producers had been tested. This evaluation includes the correlation between load and extension for different strip tensile tests and the CBR test. The presentation in Las Vegas will evaluate all eight products.

3.1 COMPARISON OF DIFFERENT TENSILE TESTS

The results of the 50 X 200 mm strip test were first correlated with those of the 100 X 100 mm to 500 X 100 mm tests. The correlation coefficients are detailed in Tab. 6.

Table 6.

Strip	٣					
[m m]	FR	ÉR				
700 × 700	0,957					
200 × 100	0,967	0,942				
300 × 100	0,936	0,936				
400 × 100	0,958	0,938				
500 × 100	0,954	0,944				

The correlation coefficients for $F_{\rm p}$ average over r = 0,953 and, for twenty value pairs, guarantee the existence of a formal relationship. Dia 3 shows this grafically with a plot of the road/extension curves for one product at widths of 100, 300 and 500 mm.

Fig. 3

Analysis of the regression coefficients gives the relationship F_R (50x200) = 0,8 F_R (1)

Dia 4 shows a plot of this relationship.

Fig. 4 Relationship Eq. (1)

Similar equations can be formulated to relate the results from different sample widths to one another.

Relating the breaking loads to the fabric weight leads to only a slight alteration in correlation.

The $v_{\rm K}$ of individual strip tests was calculated for the whole range of fabrics tested. Dia 5 shows that above a sample width of 200 mm, the results of the strip tensile tests are representative for the products in question.

Fig. 5 Variation coefficients

4.2 COMPARISON OF THE CBR AND STRIP TENSILE TESTS

The push through force and the extension at push through were correlated with the breaking load and extension at break of strip tensile tests at differing widths and in different test directions (machine and cross).

Table 7.

Strip		r					
[mm]		all	mach.	Cross			
50 × 200	FR	0,853	0,878	0,824			
JO * K00	ER	0,913	لا⊊ش, 0	0 745			
Soo k too	FR	0,886	e, 826	0,951			
	ER	0,874	0,253	0,925			

The table indicates a poorer agreement between strip and CBR tests than between different strip tests. The agreement between strip and CBR appears to improve with increasing sample width. Further evaluation of these results is planned for the presentation of the paper.

5 CONCLUSIONS

The results discussed here are based on tests on five products which had been evaluated at the time of writing. The inclusion of the remaining three products in the intervening period may lead to alterations and additions at the presentation in Las Vegas.

- The load/extension behaviour of non-wovens in the CBR test is dependent on the type of bonding. <u>Heat bonded fabrics</u> exhibit a relatively quick load uptake, the extension at push-through is lower, and the breaking point is gradual (not an abrupt tear). The initial extension and the extension at pushthrough of <u>mechanically bonded fabrics</u> is higher, and they tear abruptly when push-through force is exceeded.
- 2. The breaking load measured in a tensile test at a certain width can be converted to another width by a multiplication factor. This does not hold true for extension at break. For each product, however, the characteristic load/extension curves for different sample widths are similar and translation from one width to another is possible.
- 3. As in the CBR test, the load/extension curves of of heat bonded non-wovens in the tensile test exhibit a steeper slope i.e. a higher initial modulus than the mechanically bonded. The work done (the area under the curve) builds up more quickly at first in the case of heat bonded fabrics, but does not attain the value achieved by mechanically bonded geotextiles.

Session 6C: Properties and Tests II

- 4. A feature of staple-fibre geotextiles are irregularities in the load/extension curves prior to breaking load or push-through force. This suggests that individual groups of fibres are torn or pulled out of the fibre mass.
- Conversion between CBR and tensile tests is only possible to a limited extent, because of the different stress distribution in the different tests. This is particularly marked in the case of staplefibre geotextiles.
- Inhomogeneities in non-wovens have a more pronounced effect on the results of the CBR test than on those of wide width tensile tests.
- Both types of test should be rated equally when carrying out selection and routine control tests.

References

- (1) Alfheim, S.L. and Sørlie, A., "Testing and Classification of Fabrics for Application in Road Construction", <u>C.R. Coll. Int. Sols Textiles</u>, Vol. II, 333-338, (1977, Paris)
- (2) Wilmers, W., "Untersuchungen zur Verwendung von Geotextilien im Erdbau", <u>Strasse und Autobahn</u>, (2/1980), 69-87
- (3) Rigo, J.M. and Perfetti, J., "Nouvelle approche de la measure de la résistance a la traction des géotextiles non tisses", <u>Bull. Liaison Labo. P.</u> <u>et Ch.</u>, 107, (Mai-Juni 1980), 83-92
- (4) Sissons, C.R., "Strength testing of fabrics for use in civil engineering", <u>C.R. Coll. Int. Sols</u> <u>Textiles</u>, Vol. II, 287-298, (1977 Paris)
- (5) Sachs, L. <u>Statistische Auswertungsmethoden</u> Dritte, neubearbeitete und erweiterte Auflage, Springer-Verlag, (Berlin-Heidelberg-New York)