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Anisotropy of fiber-reinforced soil and numerical implementation
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ABSTRACT: While reinforcement in form of geosynthetic sheets or metal strips is used predominantly to
improve structural integrity of the retaining walls, highway embankments, etc., short fiber reinforcement can be
used to improve properties of the soil used as fill in geotechnical structures. A development of an anisotropic yield
condition for fiber-reinforced sand is presented. As the composite’s properties are anisotropic, the traditional
kinematic approach of limit analysis needs to be modified to account for anisotropy. An example is shown where
fiber-reinforced sand is used as backfill behind a retaining wall.

1 INTRODUCTION

Estimates of contribution of short fibers to the soil
strength were made earlier for isotropic reinforced
soils where the orientation of fibers was distributed
evenly in all directions (Michalowski & Zhao 1996,
Michalowski & Cermak 2003). Because of the tech-
nology of deposition of fiber-reinforced soils (mixing
and compacting), the orientation of fibers has clearly
a preferred bedding plane, giving rise to anisotropy
of mechanical properties of the mixture. The research
presented in this paper is concentrated on anisotropy
of the strength properties, and on application of limit
analysis to anisotropic fiber-reinforced sand.

The interest in fiber reinforcement of soils began
in the 1970’ with an attempt to estimate the influ-
ence of the plant/tree roots on stability of earth slopes
(Walderon 1977). Subsequent models were based on
analysis of a single fiber intersecting a band of soil with
localized shear strain (Gray & Ohashi 1983, Maher &
Gray 1990. While these efforts revealed the complex-
ity of the soil-fiber interaction, they did not produce
a yield condition in terms of the components of the
stress tensor. Consequently, the early models were not
implemented in the numerical tools, such as the finite
element method, or in the numerical optimization
schemes used in kinematic approach of limit analysis.

A yield condition for fiber-reinforced soil with
ellipsoidal distribution of the fiber orientation is pre-
sented here. The plastic state and the kinematic discon-
tinuities in the deformation fields will be discussed.
The internal friction angle of an anisotropic compos-
ite is dependent on the orientation (direction), and a
method to extract this angle from the anisotropic yield
condition will be presented. Finally, an application
example will be shown.
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2 DEVELOPMENT OF THE YIELD
CONDITION

The distribution of fiber orientation is considered in a
form of an ellipsoid (Fig. 1), with a preferred bedding
plane xOz.

This distribution is axi-symmetric and is a function
of angle 6
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where a and b are the half-axes of the distribution. For
convenience, the distribution aspect ratio is introduced,
defined as
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The total content of fibers is defined by their average
concentration p
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Figure 1. Ellipsoidal distribution of fiber orientation.
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Figure 2. Deformation of a representative element.

where V), and V' are the volume of fibers and the vol-
ume of the representative element, respectively. The
aspect ratio 7 of the cylindrical fibers of length / and
radius 7 is defined as

i

77:;

(C))
The yield condition is developed using a homogeniza-
tion method where an incipient plastic deformation
process is considered, as in Figure 2.

It is required that the internal work D(é;) in the
representative element be balanced by the work of the
average (macroscopic) stress 6;; on the boundaries of
the element

S B
GE = 7jD(g,.j)dV )
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The internal work is dissipated in the irreversible pro-
cess, and it is due to the frictional slip of the fibers in
the matrix material (sand). Because the composite is
anisotropic, the principal directions of the stress and
strain rates, in general, do not coincide.

Calculations of the internal work rate in eq. (5) are
tedious, and the details are omitted here (relevant ear-
lier research can be found in di Prisco & Nova 1993,
Michalowski 1997, Michalowski and Cermak 2002).
The yield condition is sought in the following form

f=R-F(p.y)=0 (©6)

where R is the maximum shear stress

1

R=2[@.-5,7 +47 [ =(4'+72) ™

and p and ¢ are the in-plane mean stress p
(p = (01 + 03)/2) and the angle that the major principal
stress makes with axis x, respectively. Some numerical
results are shown in Figure 3.

The contribution of fibers to the strength can be
characterized as a function of total fiber content p

p=100kPa
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Figure 3. Calculated condition  for

reinforced sand.

yield

(eq. (3)), distribution aspect ratio & (eq. (2)), fiber
aspectratio 1 (eq. (4)), angle of the sand-fiber interface
friction ¢,,, and also the internal friction angle of the
sand (matrix material), ¢. The analysis revealed that
the number of independent parameters can be reduced
to three: ¢, product pntan ¢, and &. The calculated
yield surfaces in Figure 3 are for p = 100 kPa, ¢ = 36°,
pntan ¢,, = 0.89, and 3 distribution ratios &: 0.2, 0.5,
and 1.0 (isotropy).

It is interesting to notice that the trace of the
yield surface at p =const is approximately circular,
independent of the distribution aspect ratio £. It is
convenient then to approximate the yield function
with a circle whose radius and the shift of the cen-
ter along g-axis (Fig. 3) depend on internal friction
angle of the sand ¢, product pn tan ¢,, characterizing
the fibers, and ratio & that carries information about
the anisotropic fiber orientation distribution.

3 LIMIT ANALYSIS WITH ANISOTROPIC SOIL

3.1 Anisotropic yield condition

Kinematic approach of limit analysis has been used
often in geotechnical engineering, but the applications
have been limited predominantly to isotropic soils.
However, the distribution of the fibers in Figure 1
leads clearly to an anisotropic composite. For constant
mean stress p, the trace of the yield condition for the
fiber-reinforced soil can be conveniently represented
as a circle; this is confirmed by the numerical homog-
enization calculations that led to the yield contours
in Figure 3. For an isotropic distribution of fibers,
£=1.0, the yield condition can be graphically rep-
resented as a circle with its center at the origin of
coordinate system g, ., (Fig. 3).

The calculations indicated that for anisotropic dis-
tribution of the fibers the yield condition can still be
represented by a circle, but this circle is now shifted
along axis ¢ by distance Q, as indicated in Figure 4.

The maximum shear stress R is now different from
the radius of the circle Ry, and it is dependent on
inclination angle ¥ of the major principal stress, which
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Figure 4. Anisotropic yield condition for fiber-
reinforced sand.
Table 1. Ry/p and Q/p for anisotropic fiber-
reinforced sand.
¢ pntan g, § Ro/p Op
30° 0.20 1.0 0.5406 0
0.5 0.5456 0.0110
0.2 0.5524 0.0251
0.40 1.0 0.5812 0
0.5 0.5912 0.0220
0.2 0.6048 0.0502
35° 0.20 1.0 0.6175 0
0.5 0.6228 0.0116
0.2 0.6298 0.0265
0.40 1.0 0.6614 0
0.5 0.6721 0.0233
0.2 0.6861 0.0530

is characteristic of anisotropy. It is also clear from Fig-
ure 4 that the principal directions of the macroscopic
stress and strain rate tensors do not coincide: 2y # 2y
(normality rule is used to describe the deformation
rate).

For practical purposes it is convenient to represent
the radius Ry and the shift Q as functions of angle ¢,
coefficient pn tan ¢,,, and distribution ratio . A sam-
ple of the calculation results is given in Table 1. The
results for £ =1.0 represent the yield condition of
isotropic fiber-reinforced soil, with shift 0 = 0. Since
function F'(p, V) in eq. (6) is a linear and homogeneous
function of p, the results in Table 1 are given as ratio
Ro/p and Q/p.

3.2 Evaluation of yield surface parameters

This paper relates only to the theoretical aspects of
the model and analysis. However, the parameters of the
yield condition can be validated experimentally. Two
plane-strain compression tests are needed to estimate
Ry and Q, one with the major principal stress per-
pendicular to the plane of fiber preferred orientation,
and the second one with the major principal stress

coinciding with the trace of the preferred bedding
plane. Consequently, maximum and minimum of ¢
on the yield surface in Fig. 4 can be determined, and
Ry and Q (or Ry/p, Q/p) evaluated, since the trace
of the yield condition was approximated as a circle.
In practice, more than two tests are needed, to assure
repeatability of the results.

3.3 Mechanisms with velocity discontinuities

Kinematic approach of limit analysis requires consid-
eration of velocity discontinuities, since they are part
of admissible failure mechanisms. It can be demon-
strated that the differential equations describing the
plastic stress field and the plastic deformation are of
hyperbolic type (Booker & Davis 1972). Similar to
the isotropic case, the characteristics of the two sets
of equations coincide (normality flow rule is used),
but their analytical representation differs slightly for
anisotropy

%ztan(l//—miv)ztan(ﬂiv),

a.p ®)

where angles m, n and { are illustrated in Figure 4,
angle v for the soil with linear dependence on p
becomes

T 4
v=2-5 )

It follows from kinematics considerations that velocity
discontinuities must coincide with velocity character-
istics, and the dilatancy along these discontinuities is
governed by internal friction angle ¢,. However, angle
¢, is dependent on orientation of the characteristic
line. In kinematic approach of limit analysis the geom-
etry of velocity discontinuities is not given a priori,
but their inclination is subject to variation in search
for the best bound to the limit load. Therefore, angle
¢, also will vary in the numerical procedure. Calcula-
tions of angle ¢, as function of orientation (direction)
are illustrated in the next subsection.

3.4 Internal friction angle in anisotropic soil

For isotropic material the internal friction angle ¢ is
independent of Y

. R
sing=—"

(10)

Internal friction angle ¢, for anisotropic composite is
not a constant, and it varies with the change in the
physical orientation (direction). The relation among
dq, R and p now becomes

Rcos(2y —217)  Rcos2m
p p

(11)

sing, =
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Figure 5. (a) Schematic of a retaining wall, (b) hodograph.

Table 2.  Wall load coefficient K.

¢ ) pntan, & K,
30° 15° 0 - 0.301
0.20 1.0 0.271
0.5 0.260
0.2 0.245
0.40 1.0 0.242
0.5 0.221
0.2 0.193

where angle 2m and the graphical interpretation of
R cos 2m are shown in Fig. 4. Based on eq. (8), the char-
acteristics (and therefore the velocity discontinuities)
are inclined to axis x at angles n & (/4 — ¢,/2), but
angles n and ¢, are related through eq. (11). Hence the
calculations of angle ¢, need to be iterative. A simple
“classroom” example is presented in the next section.

4 EXAMPLE

This example relates to the problem of active backfill
load on a retaining wall. It is expected that fiber rein-
forcement in a backfill will lead to reduction of the
load. Of particular interest is how the anisotropy of
fiber distribution affects the loads.

We consider a vertical but rough wall, Figure 5(a).
The kinematic approach of limit analysis is used, and
the hodograph for one-block (Coulomb-type) mech-
anism is shown in Figure 5(b). The roughness of the
wall is included in calculations by assuming relative
wall/soil motion vector [v] being inclined at interface
friction angle § to the wall.

The velocity discontinuity (or failure surface) AB
is a characteristic of B-family, therefore its inclination
angle 6 can be related to the direction of the major
principal strain rate 1 through eq. (8) as

” ¢H
6=n 2 + 5 (12)
In the process of finding the best solution to the wall
loading, angle 6 is varied until the maximum of pres-
sure coefficient K, is found (the kinematic approach
yields the lower bound here, because force P, is a
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reaction rather than an active force). The numerical
results are presented in Table 2.

As the fibers reinforce the backfill, the load from
the backfill on the wall is reduced, and this reduction
increases with an increase in pntan ¢,,. Significant
reduction in the load on the wall for given amount
of fibers is achieved by making the fiber distribution
“more anisotropic” (reduction in the fiber distribution
ratio £).

5 FINAL REMARKS

A model for fiber-reinforced soil with anisotropic dis-
tribution of orientation of fibers was developed, and
application of the kinematic approach of limit anal-
ysis to anisotropic soils was presented. The method
becomes more elaborate, compared to its application
to isotropic soils, because the internal friction angle
depends now on orientation. The method is effective
in solving problems with anisotropic materials. A sim-
ple example of retaining wall with fiber-reinforced
backfill was presented.
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