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ABSTRACT: This paper proposes a practical procedure for estimating the bearing capacity of strip footing on
reinforced ground. The procedure aims to fill a gap existing between classical FEM and conventional limit
equilibrium analysis, by creating a definite collapse mechanism analogous to a slip surface. Based on Mohr-
Coulomb yield criterion, a simple non-associated flow rule, a smeared shear band approach, and on an im-
proved initial stress method, the procedure provides an explicit collapse mechanism represented by stress
yield condition. Since the collapse mechanism is supported by a displacement field and a stress field, the pro-
cedure enables to perform stability analysis taking the stiffness and deformation into consideration.

1 INTRODUCTION

Conventional stability analysis based on limit equi-
librium method tends to become uncertain, when a
soil stratum consists of multiple layers, or when it
includes other materials having quite different stiff-
ness like earth reinforcement materials. This is be-
cause limit equilibrium method evaluates the mate-
rial properties only by its final strength. The method
represents kinematical conditions only by using the
mechanically reasonable shape of a slip surface, and
does not explicitly allow to consider the stiffaess
and deformation of materials, which seem to play an
important role for evaluating earth reinforcement
methods, and which may affect the global collapse
mode. To compensate for these defects, a lot of trials
have been made by applying other analytical meth-
ods, for instance, FEM and limit analysis. In order to
utilize these analytical methods in the practical de-
sign, the methods are expected to provide an explicit
collapse mode as well as a slip surface used in sta-
bility analysis, because the results by these methods
should be related closely to the conventional solu-
tions. Classical FEM does not necessarily provide a
reasonable collapse mechanism. Subjected to Mohr-
Coulomb material, the limit analysis method has not
completely overcome the difficulty that the limit
theorems cannot be proven without the normality
rule in plasticity, and that the normality rule may not
hold for the material. In spite of many researches in
recent years, the accurate description of localization
phenomenon in soils is still open to question. For in-
stance, the bifurcation analysis which tries to simu-
late actual localized deformation, seems to give a
promising view, while the analysis may not give rea-
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sonable solutions for complicated boundary value
problems like bearing capacity. Still now the stabil-
ity analysis considering both reasonable collapse
mode and material stiffness, remains a thorny sub-
ject for practical design work. Using a modification
of the smeared shear band approach (Pietruszczak et
al., 1981) which is based on estimating average me-
chanical properties of elastic solid and shear band,
and using a new calculation scheme for nonlinear FE
analysis, this paper aims to develop a practical pro-
cedure for estimating the bearing capacity, which
enables to create a reasonable collapse mode sup-
ported by a displacement field. This paper treats
only a centrally and vertically loaded strip footing
on flat subsoil under the plane strain condition.

2 CONSTITUTIVE RELATIONSHIP

2.1 Yield criterion

To relate the proposed procedure to conventional
stability analysis, Mohr-Coulomb and Coulomb
yield criteria are employed respectively to plane
strain soil mass and friction interface between struc-
ture and soil. For the friction interface we employ
the thin layer finite element as shown in Fig. 1
(Desai et al., 1984).

Mohr-Coulomb:
Fu={(ox-0y)2 4412} 172 —

{(ox+0y)sin §+2c cos ¢}=0 (1)
Coulomb:
Fc=ftsi}- c-o1 tang=0 )



where Gx, 6y and Txy: stress components, 6; and Tsz:
normal and shear stresses in friction interface (see
Fig. 1), and ¢ and ¢: cohesion and friction angle.
Both quadrilateral plane strain and thin layer finite
elements are built up from four constant strain trian-
gles, and a set of stresses is regarded constant within
each element.

2.2 Coulomb interface

Both for Mohr-Coulomb and Coulomb materials, a
linear elastic response is assumed before yielding.
Fig. 2 schematically illustrates the relationship be-
tween stress vector {c} and strain vector {€}. When
applying further footing pressure after a stress state
has reached the yield surface, the stress state will
move along the yield surface as seen in Fig. 2. This
is because normal stress or becomes larger with the
increase in footing pressure, and because yielding
shear stress increases with normal stress for fric-
tional material. Point B in Fig. 2 corresponds to a
plastic equilibrium state at an arbitrary position
within a yield region. At the elasto-plastic state from
point A to B shown in Fig. 2, we employ the sim-
plest non-associated flow rule or plastic potential Oc
defined by Fig. 3 (Mroz, 1980) '

Oc = Tt | - g -ortanv

(3)

where v: dilatancy angle (see Fig. 3) and g: a hypo-
thetical parameter which is not cited actually, be-
cause Qc is used only by its differential form. For
thie thin layer element shown, Egs. (2) and (3) give
the elasto-plastic stress-strain relationship as (Zien-
liewicz et al. 1969)

{80} =[Dser|{6eeP)

{d0}={d0s, b0¢, OTs) T

{ 6ger}={desep, Sesep, Sysep) T

[Dsep] =[D]-[D] {0Fc/d{c}}

x{0Qc/0{c})T [D}/ {6Fc/d{c}}T

x[D]{6Qc/0{c}}

where {60} and {deer}: stress and elasto-plastic
strain increments (Fig. 2), [Dser]: elasto-plastic
stress-strain matrix in local coordinate s-¢ in Fig. 1,
[D}: elastic matrix, E: Young's modulus, p: Poisson's
ratio, and G: rigidity modulus.

2.3 Mohr-Coulomb material

When shearing a finite size of soil element, it is well

known that we often observe a shear band or slip

surface as shown in Fig. 4 (a). Despite many theo-
retical and experimental studies concerning the
mechanism of shear band formation, we have not
reached a final agreement with regard to inclination

angle of shear band a defined in Fig. 4 (a) (e.g. Var-

doulalds et al., 1980). Since our main concem is to

(4)

Figure 1. Interface element.
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Figure 2. Stress-strain relationship (Coulomb material).
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Figure 3. Non-associated flow rule (Coulomb material).
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get a practical design procedure, we employ the
most fundamental expression as

o= /4+$/2 . 5

Without introducing a separate interface element
‘corresponding to a shear band, Pietruszczak et al.
(1981) proposed the smeared shear band approach
which evaluated the average stress-swrain response of
solid and shear band. This approach assumes elastic
response of solid and purely plastic response of
shear band. Herein we assume elastic response of
solid and elasto-plastic response of shear band, be-
cause this postulate yields a convenient constitutive
behavior as described later. According to the proce-
dure by Piewuszczak et al. (1981), the average
siress-strain marrix is given as follows. Assume that
a plane strain solid element reaches a yield state, and
that a shear band has been created as shown in Fig. 4
(a). Regarding the shear band as a thin layer element
shown in Fig. 1, strains in shear band are given in
" local coordinate s-t as (Eq. 4)

{8eeP}=[DsseP])-1{ b0} (6)

. Assuming elastic response except in shear band,
strains in solid region are

{8e¢}=[D}1{d0c} (7

Superposing these two strains by Piewuszczak et al.
(1981), average stress-swrain mawix of the whole
~element [Dgev] and that in global coordinate x-y
[Dxyav] are

[Dstav)={ [Dsiep]1t NA cosp+[D}1(1-t//A
xcosf)}-1 ®)

(D] =[1TT[Ds] [T] ©)

.where #: thickness of shear band, and [T]: coordinate
transformation mawrix. Both [Dsev] and [Dx2v] in-
clude no current stress components. The average
matrix calculated above becomes close to the stress-
strain mawrix for the stratified or cross anisotropic

_ material which is built up from the Coulomb mate-
rial represented by a thin layer element as illustrated
in Fig. 4 (b).

2.4 Direction of shear band

Generally a set of two shear bands or slip surfaces
A-A' and B-B' is possible for a finite soil element
according to the principal stress state as shown in
Fig. 5. In practical problems we must select one of
these two shear bands. Since our object is to get a
practical method for stability analysis, we make effi-
cient use of the conventional collapse mode as illus-
trated in Fig. 6. Many experimental researches have
‘observed actually the active wedge developing in
model test. A lot of bifurcation analyses also have
obtained the active wedge, while the analyses have
not got the complete collapse mode as illustrated in
Fig. 6. Based on these results, we assume the active
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Figure 5. A set oftwo slip surfaces.
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Figure 6. Isolation of slip surface.
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Figure 7. Direction of slip surface in a element.

wedge below strip footing base, which is represented
by a series of interface elements in Fig. 9 shown
later. Thus we employ the right-hand side shear band
B-B' defined in Fig. 5 within the active wedge in
Fig. 9, and assume the left-hand side shear band A-
A' in Fig. 5 outside of the active wedge as seen in
Fig. 6. Referring to Fig. 7, the direction of A-A' or
B-B'line in Fig. 6 is given as

B= -a-06 :A-A'line
= 0-6 :B-B'line (10)

where f: inclination angle of shear band, and 6: an-
gle of the major principal stress from vertical axis



(Fig. 7). Note that compressive stress is positive here
and that shear stress T is negative along A-A' line in
Fig. 6 and positive along B-B' line.

3 NUMERICAL PROCEDURE

3.1 Fundamental aspect

Fig. 8 defines actual stress of initial state {cs}, yield
stress {ca}, actual stress of plastic equilibrium state
{oB], elastic stress {c g}, virtual initial stress {co},
total strain {¢}, elastic strain {¢¢}, and elasto-plastic
strain {ger}. 1) For the convenience of solving bear-
ing capacity problems, we apply footing pressure by
many. loading stages subdivided. In the application
of initial stress method, we use the same stiffness
matrix throughout all the loading stages, because we
assume linear response of subsoil both before and
after yielding. 2) Yield stress {ca} is isolated by
Zienkiewicz et al. (1969) 3) To determiine the direc-
tion of shear band as shown in Fig. 7, it is necessary
to find direction of the major principal stress 6. We
decide 6 by using yield stress {ca}, and use it
throughout the succeeding loading stages.

3.2 Improved initial stress method

The original initial stress method often provides un-
stable results for our problem. The incremental: pro-
cedure which treats the nonlinearity as piecewise
linear, does not create the collapse mode as illus-
trated in Fig. 6. These difficulties are avoided by in-
troducing an iteration scheme based on the conjugate
gradient method (CGM, Flecher et al. 1964) instead
of the original initial stress method. CGM is often
used for solving simultaneous linear equations with
quite many unknowns, for the purpose of reducing

{r}i={oo0}i-{oE)i+{oB)i
= {c0}i- ([DJi-[Dxy2] )[BI{ [KT 1({o7}
+%[B)iT{60};4,)}=0 (11)

where {r}:: residual, [Bli: matrix for calculating
strain components from nodal displacements, [K}:’
global stiffness matrix, {5f): load increment vector,
Ai: area of the element, and suffixes i and j denote
element number.

The iteration procedure by CGM is as follows. 1)
Set the trial values of {cp}. 2) Calculate gradient
{g}n given by Eq. (12), where n designates an itera-
tion number. 3) (d}m=-(g}r+{d}n1-{g}n T{g}n
/{g}n-]T{g}n»l' 4) {60}"+‘={00}"+7\."{d}". 5) Repeat
1) to 4) until {r}; becomes sufficiently small. {g}n

"~ and A» are calculated analytically. Conclusively the

computational effort. The constitutive model em-

ployed here, which is a linear equation also at elasto-
plastic state, enables to apply effectively CGM.
Since {cp} = {oe} - {oB}, the basic equation is
given as : .
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Figure 8. Initial stress method.

numerical steps during a typical load increment are
summarized as follows. 1) Performing an elastic
analysis by using actual load increment {&f}, calcu-
late {og} and {€} in Fig. 8. 2) Find the yield finite
elements in which {og} violates the yield criterion.
3) For the yield elements, calculate yield stress {c,}
both from {og} and the preceding stress state. 4)
Concerning {ca}, calculate direction of the major
principal stress 0, and find shear band inclination
angle B by Eq. (10) (Fig. 8). 5) Calculate [Dyyv] by
Eq. (9). 6) Determine {60} by CGM. 7) Again, find
the yield finite elements by performing an elastic
analysis by use of both {&f} and {co} determined at
6). When finding new yield elements, determine
{60} by CGM subjected to the total yield elements
including the new yield elements. Repeat this proce-
dure until no new yield elements are found. &)
Based on the final resulls at 7), caleulate necessary
state variables {og}, settlements, and so on.

4 CASE STUDIES

~ We discuss the effect of earth reinforcement, con-
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cerning the bearing capacity of a rigid strip footing
on a homogeneous and ponderable c-¢ soil stratum.
FE meshing and material parameters are given in
Fig. 9, in which y: unit weight, T thickness of foot-
ing and A: area of cross section of truss material. As

described before, the active wedge below footing

base is assumed by a series of interface elements, so
as to isolate the direction of shear band (Fig. 5). An-
gle.a in Fig. 9 is given by Eq. (5), regarding the ver-
tical footing pressure as the major principal stress.
Actual initial stress vector {o/} is given as: vertical
stress Gy=overburden pressure, horizontal stress
0xr=Kooyr, and Txy1=0, where K¢=1-sin¢. For conven-
ience, we introduce ‘footing pressure ratio R' defined
as . .

R= q /g, (12)



footing: E=980 MPa, u=0.16, T={ m
interface: G=3,68 MPa, E=9.8 MPa, 1=0.33

- N
L /7 c=9.8kPa, ¢=20°,y=0 -
asxidreg T T T 1 | 1 ]
d Erirjid b ] .
toiss material EA=19,6 MN/m ~
subsoll: E=9.8 MPa, 11 =0.33, r=16.7 kim®> | E
c=9.8kPa, ¢=20°, v=0 h
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Figure 9. FE meshing,

where g: current footing pressure applied, and g,: ul-
timate bearing capacity given by Terzaghi. R is in-
creased step by step at each loading stage subdi-
vided. Fig. 10 shows the relationship between R and
footing settlement calculated by the proposed proce-
dure. When ¢ exceeds 25°, the iteration by CGM
does not converge at a certain loading step. This
suggests that we cannot-find a plastic equilibrium
state B shown in Fig. 2 for larger R, which is consid-
ered as the bearing capacity. When CGM converges
at every loading stage, we regard the bearing capac-
ity as the footing pressure at which settlement in-
creases remarkably, or as the pressure at which R-
settlement curve merges into the approximate
straight line observed after R has exceeded the criti-
cal pressure, as shown in Fig. 10. This is because the
straight line ‘means the plastic flow of foundation
subsoil. The bearing capacity in terms of R is called
‘critical footing pressure ratio Rcr'. As shown in Fig.
10, this earth reinforcement method increases Rer
from 1 (no reinforcement) to 1.3. Fig. 11 compares
the yield region respectively for reinforced ground
with natural ground, in which the bold solid line in
each finite element represents the direction of shear
band as shown in Fig. 4 (a), and that the element has
yielded. Fig. 11 (a) seems to produce a collapse
mode analogous to Prandtl mechanism given for im-
ponderable subsoil. More complete collapse mode is
observed for larger R. The collapse mode in Fig. 11
is supported by the displacement field shown in Fig.
12 and stress field shown in Fig. 13. That is, the col-
lapse mode is created by considering the weight of
subsoil, stiffness of footing and subsoil, friction be-
tween footing and subsoil, and stress concentration
at the edge of rigid footing, most of which are ig-
nored in Prandtl and Terzaghi approaches. The yield
region in Fig. 11 tends to distribute deeply below
footing. Despite the lateral plastic flow as illustrated
m Fig. 11, the vertical pressure must reach lower
" subsoil due to the vertical equilibrium condition, and
the pressure makes lower subsoil yield. Although
conventional stability analysis provides little infor-
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Figure 10. R-settlement curves.
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Figure 11. Yield region.

 mation about yield state except on the location of

slip surface, there is the possibility that the region
lower than the slip surface may yield. In Fig. 12 we
observe little deformation of lower subsoil. The pro-
posed procedure represents a collapse mode by yield
condition of stresses, which is the same as conven-
tional stability analysis and different from most ap-
plication of conventional FEM using strain distribu-
tion. The conventional design scheme based on
stability analysis, uses the collapse mechanism as-
sumed without reinforcement, and evaluates the re-
inforcement only by its final strength. The scheme
neglects the stiffness of reinforcement material
which may restrict the deformation of subsoil and
which may largely contribute to the improvement of
bearing capacity. This example proves the possibil-
ity of applying the proposed procedure to the stabil-



iz

Figure 12. Displacement field (reinforced, R=1.5).
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Figure 13. Principal stresses (reinforced, R=I.5).

ity analysis of earth reinforcement, which takes the
stiffness and displacement of material into consid-
eration.

5 CONCLUSIONS

This paper proposed a numerical procedure for ana-
lyzing the bearing capacity of strip footing. The pro-
cedure aims to fill a gap existing between conven-

tional stability analysis and classical FEM. The pro-
cedure employs Mohr-Coulomb and Coulomb yield
criteria respectively for soil mass and friction inter-
face between soil and structure. By assuming a lin-
ear elastic response before yielding and a simple
non-associated flow rule after yielding, and by em-
ploying a modified smeared shear band approach
and an improved initial stress method, the procedure
provides an explicit collapse mechanism like a slip
surface. At the collapse mode, a stress yield criterion
is satisfied as well as along a slip surface supposed
in conventional stability analysis. Case studies show
that the proposed procedure provides a solution
close to the conventional solution, and show the pos-
sibility that the procedure gives a reasonable esti-
mate of bearing capacity on reinforced ground.

REFERENCES

Desai, C. S., Zaman, M. M., Lightner, J. G. & Siriwardane, H.

528

J. 1984. Thin-layer element for interfaces and joints. Int. J.
Numer. Anal. Methods Geomech. 8: 19-43.

Flecher, R. & Reeves, C. M. 1964. Function minimization by
conjugate gradient. Computer J. 7: 149-154

Mroz, Z. 1980. Deformation and flow of granular materials.
Mechanics of Solids (the Rodney Hill 60th Anniversary
Volume) Pergamon Press, Oxford. 119-132.

Ortiz, M., Leroy, Y. & Needleman, A. 1987. A finite element -
method for localized failure analysis. . Computer Methods
Appl. Mech. Eng. 61: 189 - 214.

Pietruszczak, S. & Mroz, Z. 1981. Finite element analysis of
deformation of strain-softening materials. Int. J. Num.
Methods Eng. 17:327-334

Vardoulalss, I. 1980. Shear band inclination and shear modulus
of sand in biaxial tests. Int. J. Num. Ana. Methods Ge-
omech. 4:103-119.

Zienkiewicz, O. C., Valliappan, S. & King, I. P. 1969. Elas- -
toplastic solutions of engineering problems ‘initial stress',
finite element approach. Int. J. Numer. Methods Eng. 1:
75-100. . ’



