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~ Collapse loads on reinforced foundation soils

ABSTRACT: Unpaved roads and reinforced fills are among common applications of geosynthetics in their rein-
forcement function. Calculations of limit loads on reinforced foundation soils are typically based on very ap-
proximate assumptions, often based on small-scale experiments. The linematic approach of limit analysis is used
here to indicate what a rational solution to the limit load might look like. Preliminary results for a foundation soil
reinforced with one layer of reinforcement are presented. :

1 INTRODUCTION

Geosynthetic reinforcement is often used to improve
performance of paved and unpaved roads, and, more
generally, to reduce settlement and increase bearing

_capacity of engineered fills. Limit loads on founda-

tion soils have been a subject of research since the
1950's, and a substantial body of literature is avail-
able in regard to the swip footings on uniform and
isotropic soils. An application of waditional meth-
ods to stability analysis of reinforced soils requires
some modifications. Kinematic method of limit

- analysis offers a common' framework for calcula-

tions of limit loads for homogeneous and inhomoge-
neous soils, isotropic and anisotropic, and natural
and reinforced soils.

Two approaches can be clearly distinguished in

“stability calculations of reinforced soils: continuum

analysis and the structural approach. In the first one
the reinforced soil is first homogenized to form an
anisotropic continuum, and the calculations of bear-
ing capacity are performed using the finite element
or the slip line method. The second approach in-

commonly applied than the lower bound, since the
kinematically admissible collapse mechanisms are
easier to construct and optimize than statically ad-
missible stress fields. Calculations of the limit load
are based on the upper-bound theorem, which states
that the work dissipation rate is' not less than the
work rate of extemal forces in any hinematically
admissible mechanism

Lb(éij)dv > LY}vidS + [ 7vdv | (1)

The left-hand side of eq. (1) represents the rate of
work dissipation in the mechanism, while the terms
on the right-hand side show the work rate of the
limit load on boundary. S, and the work rate of soil
weight. Hence, an upper estimate of the limit load
can be calculated from eq. (1) once the dissipation
rate and the work of the soil weight are known.

- Equation (1) will be used later to arrive at a reason- .

volves limit analysis where both the soil and rein- -

forcement are considered as two separate structural

_components. The latter approach will be focused on
- in this paper. ) '

2 STABILITY ANALYSIS OF REINFORCED
FOUNDATION SOIL

2.1 Kinematic approach

Limit analysis is a common framework within which
solutions to many stability problems can be found.
Although kinematic approach guarantees the upper
bound (thus unsafe) to the true limit load, it is more

able formula for limit loads over reinforced founda-.
tion soils. ‘ ‘ -

22 Colla pse pattern

Reinforcement is limited here to one layer of geo-
synthetics placed in a granular fill. In an earlier pa-
per by Huang & Tatsuoka (1990) two effects were

* distinguished depending on the length of the rein- .

forcement: “a deep footing effect” associated pri- -

‘marily with short reinforcement, and a “wide slab ef- -
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fect.” Only long reinforcement is considered in this
paper. The mechanism postulated for the interaction
of soil and reinforcement is similar in shape to the
mechanism without reinforcement, as indicated by
earlier experiments (Michalowski 1998). This mech-
anism is shown schematically in Fig. 1(a), and the
velocities of the blocks are indicated in the hodo- -
graph in Fig. 1(b).
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Figure 1. Collapse of reinforced soil: (a) failure mechanisrﬁ,
and (b) hodograph. .

Collapse of reinforcement can occur in two ways:
rupture or pull out. Calculations of bearing capacity
in case. of reinforcement rupture are somewhat easier
to address using a homogenization approach
‘(Michalowski & Zhao 1995). Here the focus is on
the pull out mechanism. Calculations of work dissi-
pation rate during pull out require that the traction
on reinforcement be known. However, the stress
distribution is unknown, and, to make the calcula-
tions possible, a realistic yet approximate distribu-
tion of traction on reinforcement had to be assumed.
This assumption relaxes the rigorous character of
limit analysis, though the result is still expected to
be a reasonable solution.

- Following the distribution of the mean stress in a
plasticity-based solution for a bearing capacity prob-
lem, we assume that the. vertical stress distribution

_angle ¢=26° b/B=6).
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Figure 2. The effect of reinforcement depth d/B on the bearing
capacity of strip footings (one layer of reinforcement).

2.3 Preliminary results

Having the normal stress distribution on the rein-
forcement, the work dissipation rate was calculated,
and eq. (1) was used to indicate whether the model
yields reasonable results. Calculations were per-
formed for different reinforcement depth d (internal
friction ¢ = 35°, geosynthetic/soil interaction friction
The function plotted in
Fig. 2 indicates the percent increase in bearing ca-
pacity as function of the depth of reinforcement be-
low the footing. As the calculations were performed
for a surface footing, there is no increase -of limit
load if the geosynthetic is placed at d = 0. The bene-
fit from the reinforcement then increases gradually
up to the depth of about 0.8 of the footing width, and
then drops off very rapidly after that. The maximum
benefit from one-layer reinforcement appears to be
about 40% in terms of the bearing capacity in-

. crease.

on reinforcement is constant across the block imme-

diately below the footing (Fig. 1(a)), and constant
across the block adjacent to the boundary (the last
. block in the mechanism, the first one being the one
immediately below the footing). This traction, while
assumed constant across these two blocks, is
increasing with depth. The normal stress on reinfor-
cement is then assumed to change in a linear fashion
in the “transition” zone (between the first and last
blocks). Having made this assumption, calculations
of the work dissipation rate during reinforcement
pull out become possible, and the framework of the
- kinematic approach of limit analysis can be used.

Similar calculations for cohesive soils (¢ =0, ¢ >
0) indicated about 30% increases in bearing capacity
and optimum reinforcement depth of about 0.455.

These results seem to be very reasonable when
compared with experimental results available. The
optimum depth of reinforcement was reported rang-
ing from.about 0.4 d/B for cohesive soils (Sakti and
Das 1987) to about 1 for granular soils (Yang et al.
1994).

3 BEARING CAPACITY

While attempts have been made in the past to derive
a formula for bearing capacity increase associated
with the rupture of reinforcement (Giroud & Noiray
1981), no pull out mechanism has been included in
such analyses. In the following, we are suggesting
that a general formula can be derived from the struc-
ture of the energy rate balance equation. Considera-

.tions are limited here to granular fill (no cohesion)
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and one layer of reinforcement, but they can be eas-
ily extended to a more general case.



The left-hand sidé of eq. (1) contains only the

work dissipation rate due to reinforcement pull out, -

since soil has no cohesion. The terms on the right-
‘hand side include the work rate of the distributed
limit load p, and the soil weight y. Since the traction
on the reinforcement is dependent on p and v, then
the work dissipation rate will have two terms. Equa-
tion (1) can be rewritten here in a simple form

D,+D, 2W,+W, ' @)

- Assuming that the footing moves downward with
velocity v,, the wogk rate of the limit load is

W, = pBv, _ 3)

while the workrate of the soil weight Yis

W, =Y Syv"™ 4

i=l .
where p is the bearing pressure, v, is the vertical
component of the velocity of the first block, v is
the vertical component of velocity of block i, ¥ is the
unit weight of the soil, S; is the area of block i, and »
is the number of blocks in the mechanism. Substi-
tuting equations (3) and (4) into (2), and solving for
bearing pressure p, one can present the result in the
- following form

1 .
- 7’ B W, +fz 9y ) ®
P= 1- fM 2
where fis the reinforcement roughness coefficient
_tang, '
tan ¢

where ¢, is the soil-reinforcement interface friction
- angle. Coelficient Ny is adopted here after a recent
~ limit analysis-based proposal (Michalowski 1997)

Nr - e(0.66+5.i11an¢) tang (6)

The remaining coefficients in equation (5) have been
evaluated through a series of numerical calculations
for variety of internal friction angles.

4 NUMERICAL CALCULATIONS
4

Several series of calculations were performed in or-

der to evaluate coefficients M, and M, Each series

was performed for a variety of internal friction an-.

gles and different depth of the reinforcement (and f
=0.75).

Because the geometry of the collapse mechanism
(Fig. 1(2)) is not known a priori, an optimization
technique was used to arrive at the minimum bearing
capacity for each set of internal friction angle and

the reinforcement depth. The geometry of the mech-

anism was variable in the optimization process.
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Figure 3. Coefficient #, as function oftang.

The form of eq. (5).is the direct implication of the
work balance equation. The numerical values of the
terms in (5) were exwacted from the optimization
computations, and the coefficients M, and M, were
plotted as functions of the internal friction angle and
the reinforcement depth.

Figure 3 shows coefficient M, as a function of
tand. As expected, M, is an increasing function of
internal friction angle. An interesting plot is that
showing (&/B)M, as function of relative reinforce-
ment depth d/B (Fig. 4). For the fill up to about 30°
(d&/B)M, increases rather slowly with an increase in
d/B, and it drops to zero at depth where the mecha-
nism is not influenced by the reinforcement. For
larger internal friction angles (d/B)My increases more

. rapidly with an increase in reinforcement depth, and it

drops to zero at much larger depths.

For practical reasons coefficient M, was ap-
proximated with an exponential function (using the
least squares technique). The resulting formula can
be written here as

‘My = el.l7+3.98(an¢ tan¢ (7)

It should be noted that eq. (7) can be used only when
the reinforcement is placed at a depth where it -
clearly contributes to bearing capacity. This depth
depends on the internal friction angle of the soil and
it varies from zero to 0.65 for ¢ = 30°, 1.0 for ¢ =
40°, etc. These depths can be incurred from Fig. 4.

Coefficient M, was also found based on the opti-
mization calculations of p. It was also found to be a
nonlinear function of ¢, but it appears to be ap-
proximately linear in tan¢

M, =022tang (8)
Coefficients in (7) and (8) now can be used di-

rectly in calculations of bearing capacity of surface. -
footings using the formula in (5).
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Figure 4. Product (d/B)M,as function of relative depth of rein-
forcement d/B for different internal friction angles (¢).

5 CONCLUSIONS

A consistent use of limit analysis was presented to
calculate the bearing capacity of reinforced fills.

580

The analysis has been restricted here to surface foot-
ings on a granular fill, but the concept can easily be
extended to footings on cohesive-frictional soils re-
inforced with geosynthetics.

The work is underway to generalize this approach
to include surcharge load, soil cohesion, and multi-
ple layers of reinforcement.
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