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Simplified design method for reinforced slopes considering
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ABSTRACT: A limit equilibrium-based design method for reinforced slopes considering progressive failure is
developed. A local safety factor is first defined at the base of each slice so as to describe local failure along a slip
surface. An incremental approach is constructed to solve the equations and an empirical interslice force function
is introduced to enhance the efficiency and robustness of the solution procedure. Then, a new design scheme
for reinforced slopes is proposed. In this scheme, an optimization technique is contrived to determine tensile
resistances of reinforcement elements that will be required to provide an adequate factor of safety of reinforced
zones. The proposed procedure can be used to determine suitable layout of reinforcements and required tensile
strength of reinforcing material. Finally, results obtained from an example are presented and discussed to provide
a guideline for practical design of reinforced slopes using the proposed method.

1 INTRODUCTION

In general, slip surface development in an actual slope
is a progressive phenomenon.This is especially true for
reinforced slopes that contain foreign materials (e.g.,
Huang et al. 1994). This behavior of slope failure can-
not be simulated using traditional limit equilibrium
methods as they are based on a single value factor of
safety analysis (Yamagami et al., 2001).

A limit equilibrium-based method has been devel-
oped by the authors (Yamagami et al., 2001, 2002)
to analyze the stability of unreinforced slopes consid-
ering progressive failure. In this paper, an empirical
interslice force function is introduced to enhance
the efficiency and robustness of the solution proce-
dure. Then, the method by Yamagami et al. (2001)
is extended so as to present a design scheme for
reinforced slopes. In this scheme, an optimization
technique is contrived to determine tensile resistances
of reinforcement elements that would be required to
provide an adequate factor of safety of reinforced
zones. The proposed procedure can be used to deter-
mine suitable layout of reinforcement and required
tensile strength of reinforcing material.

2 THEORY OF STABILITY ANALYSIS

2.1 Equations

Figure 1 shows forces acting on an infinitesimal slice.
The symbols in this figure are taken from Yamagami
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Figure 1. Forces acting on a typical slice.

et al. (2001). A local factor of safety was defined
at the base of each slice (Eq. (1)) and a relationship
between interslice normal and shear forces (Eq.(2))
was assumed.
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where T is tensile force due to reinforcement, λ is
an unknown constant, and f (x) is an insterslice force
function. For a sliding mass divided into n slices, the
basic equations can be obtained using a similar deriva-
tion to the Morgenstern-Price’s procedure. They are
two recurrence relations, as shown bellow.

where bi = xixi−1 (i = 0, 1, 2,· · · , n), xi, xi−1 are hor-
izontal coordinate of the left and right side of slice
i, respectively, Mi[ = Ei(yti − yi)] is a moment of Ei
about the rightmost point of the base of slice i. Note
that tensile force Ti in Equation (4) is equal to zero for
slices where reinforcement is not included.

2.2 Solution procedure

Suppose the solution process has reached the (i-1)th
slice, starting from the first one, and hence Fi−1, Ei−1,
etc. have become known. By assuming a value for the
local factor of safety Fi of slice i, Ei can be calculated
from Equation (3). Substituting Ei obtained in such a
way will not usually satisfy the equality, because the Fi
value used is assumed. Equation (4) is then regarded as
a function only of Fi and is solved for it iteratively by,
for example, the Newton-Raphson method. Note that
during this iteration Ei is kept at the value obtained
immediately before.

Returning to Equation (3) with Fi obtained above,
we calculate a new value for Ei, and check whether or
not Equation (4) is satisfied using the new value of Ei.
This process is repeated until the equality of Equation
(4) becomes valid within a prescribed tolerance. Then,
we can proceed to the next slice (i + 1) and carry out
the same process as above.The complete solution must
satisfy the boundary condition: E = En, in which En is
a prescribed value at the end point of the slip surface;
usually this is zero.

2.3 Introduction of an interslice force function

Use of an interslice force function was advocated by
Morgenstern and Price (1965). It was suggested that
integration of the interslice shear and normal forces
acting along vertical planes through the soil mass

could provide the forces necessary for an appropri-
ate interslice function. Fan et al. (1986) used an elastic
theory approach (i.e. finite element method) to com-
pute the normal and shear stresses along vertical planes
through a sliding mass. The stresses were then inte-
grated vertically and the ratio of the shear to normal
interslice forces was computed. The interslice force
functions for simple slope geometries were found to
be bell-shaped. Based on the examination of several
hundred interslice slice functions obtained from the
linear finite element stress analysis, Fan et al. (1986)
proposed a generalized equation for expressing the
interslice force function:

where K is the magnitude of interslice force function
at mid-slope (i.e., maximum value), d is a variable
defining the inflection points near the crest and toe of
a simple slope, m is a variable specifying the flatness
or sharpness of curvature of function, and ω is the
dimensionless position relative to the midpoint of each
slope. Fan et al. (1986) presented the charts which can
be used to determine values of the above-mentioned
parameters for a given slope.

2.4 Optimization of yt

An analysis using the Morgenstern-Price method
(1965) and the f (x) defined by Equation (5) yields
a set of values of λ and yt . The λ, f (x) and yt values so
obtained are used to solve Equations (3) and (4). It has
been shown that for simple slope geometries solutions
which meet the boundary condition E = En can usu-
ally be reached. For cases where the solution procedure
does not converge, Yamagami et al.(2002) suggested
an optimization problem in which En is considered to
be a function of λ and yt :

Solving Equation (6) will lead to a set of appropriate
values of λ and yt (Yamagami et al., 2002).

2.5 Load incremental procedure (LIP)

A load incremental procedure proposed by Yamagami
et al. (2002) is an effective approach for solving Equa-
tions (3) and (4). In this procedure, the self-weight
and subsequent surface load is subdivided into several
increments. The solution for each step of loading is
obtained, and the incremental process is repeated until
the total load has been reached. During the solution
process, if a local failure takes place, the local factor
of safety for that region will be kept at unity in subse-
quent steps. Note that the definition of load increments
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in the proposed method differs slightly from that for
the usual finite element stress deformation analysis as
seen in the following.

The self-weight W and external load P is divide into
N and M increments, respectively:

Then, the following load increments are defined:

Note that WN = W and PM = W + P. The anal-
ysis procedure using the LIP is shown as follows
(Yamagami et al., 2002):

1) The solution procedure in Section 2.2 is carried out
for each incremental load, starting from W1.

2) Suppose that a local safety factor less than unity
has appeared for the first time at the base of a slice
when the load at ith loading step, Wi, is employed.

3) An iterative calculation is done so that the factor
of safety for the locally failed slice becomes equal
to unity under the load Wi. As a result of this cal-
culation, if a slice other than the slice mentioned
above has had a factor of safety less than unity, then
the calculation must be repeated until the factor of
safety of each slice is not less than unity.

4) The procedure is continued with next load Wi+1;
however, in the subsequent process the factors of
safety are known (=unity) for all the slices which
have already failed in the preceding steps.

5) Hereafter, the process described above can be
repeated using an incremental load one after
another. The required solution is provided by the
results obtained at the final load step, i.e. using
load WN , or PM if an external load is applied.
At the final step of loading, the factor of safety
of each slice in local failure zone must be equal
to unity.

In this way the LIP procedure continues with grad-
ually increasing loads, and once a failed zone occurs
the local factor of safety for the region will be kept at
unity in the subsequent process.

It should be pointed out that softening of soil can be
easily considered and handled in a LIP, and an over-
all factor of safety can be computed from the ratio
between the sum of the mobilized shear forces and
the sum of the available shear strengths along the slip
surface (Yamagami et al. 2002).

3 DESIGN METHOD FOR REINFORCED
SLOPES

3.1 Basic idea

With predetermined tension forces of reinforcements
the procedures described in the foregoing section can
be used to yield the local factors of safety along a given
slip surface in reinforced slopes. This also means,
however, that the reinforced slope problems cannot
be solved without knowing the tensile forces of the
reinforcement elements. This is a weak point associ-
ated with the limit equilibrium methods including the
proposed approach when solving the stability problem
of reinforced slopes. Unlike pretension type anchor
works, it is virtually impossible to know the mobi-
lized tensile forces of passive reinforcements such as
nails or steel bars in a reinforced slope, without resort-
ing to some numerical means like the finite element
method. In practice, therefore, designers often simply
assume values for the reinforcement forces in advance
when using a limit equilibrium approach. With regard
to this, a novel method was presented by Yamagami
et al. (2002) that could be used for design of rein-
forced slopes in practice. For the completeness, this
approach is presented by using a hypothetical situation
in Figure 2.

Suppose that the slope shown in Figure 2 (a) is
potentially unstable, having a local failure zone along
the slip surface. Suppose also that reinforcement ele-
ments (nails) are inserted passing through the bases of
all slices in the failure zone, as shown in Figure 2(b).
Note that nails may also be further installed in the other
portions of the slip surface out of the local failure zone
if necessary. And conversely they do not necessarily
have to cover the whole of the local failure zone.

Here we introduce the following two very important
premises:

I) Even after nails are installed, failure of the slope, if
it occurs, takes place initially from the reinforced
zone, never from some part of the unreinforced
zones.

II) It is possible to calculate mobilized tensile forces
of the nails at an inception of the failure of the
reinforced zone.

Then, the slope never fails along the slip surface if
the nails can actually resist the mobilized tensile forces
mentioned in the second premise II) provided that the
first premise I) is ensured.

The idea briefly above described enables us to
design reinforced slopes rationally; in the following
its details will be discussed focusing on an optimiza-
tion scheme that will be contrived to realize the two
premises.

First, the solution procedure described in Section
2.2 is performed to compute the local factors of safety
with the constraints that the factor of safety for each
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of the reinforced slices must be equal to unity. How to
solve this problem is described later. Then, it is nec-
essary to make sure that in the obtained result local
safety factors have become all greater than unity for
the remaining unreinforced zones. It should be noted
that only if this condition is satisfied, premise I) can
be realized. And if not, i.e. somewhere in the unrein-
forced region if there is at least one slice whose safety
factor is less than 1.0, the analysis has to be performed
again by changing the arrangement of nails. A detailed
explanation for this is also given later. Next, take note
of the tensile forces mobilized in the nails. These ten-
sile forces, when actually applied to the reinforcements
in Figure 2(b), have functions to render the reinforced
region to be in a limit equilibrium state having the
factors of safety of just unity, and to render the unre-
inforced region to be in a stable state with the factors
of safety greater than unity. Therefore, if the designer
employs reinforcement materials whose strengths are
sufficient to resist the tensile forces, then the slope
would never fail.

As seen from the above discussion, the current prob-
lem can eventually be condensed into how to establish
an approach which substantiates premises I) and II) to
identify the tensile forces corresponding to the factors
of safety of unity for the reinforced zone. To this end,
Yamagami et al. (2002) have contrived an optimization
approach which is explained below.

3.2 Layout and required strength of
reinforcements

The proposed approach by Yamagami et al. (2002)
consists of two stages.
First stage

1) Stability analysis of a (potentially unstable) slope
without reinforcement is performed in terms of the
procedure described in Section 2.2, and thus local
failure zones where local factors of safety are lower
than unity are found.

2) A reinforcing element is installed at each of the
slices within the failure zones (and in other places
along the slip surface if necessary). Tensile forces
Ti (i = 1, 2, · · · , M ), where M is the number of rein-
forcements installed, are evaluated by solving the
following optimization problem (Yamagami et al.,
2002):

where F0 is a target value of local factors of safety
taken to be unity for all slices with reinforcements
along the slip surface; Fi (i = 1, 2,· · · , M ) is the
calculated local factor of safety.

Values for Ti (i = 1, 2,· · · , M ) obtained by solving
the optimization problem shown in Equation (9) make

the local factors of safety of all nailed slices equal to the
target value (i.e., unity) In addition, Ti values should be
those which yield local safety factors greater than unity
for the unreinforced zones in order to realize premise I)
requiring the failure to start at the reinforced zones.

3) If the values of local factors of safety of all unrein-
forced slices are greater than unity in the solution
of the optimization problem, the result obtained
is regarded as the required solution that satisfies
premises I) and II) in practice. The condition that
the factors of safety must be greater than unity for
unreinforced regions is usually satisfied because
reinforce-ments are inserted covering the local fail-
ure zones for the unreinforced state. Nevertheless
this condition may not be satisfied though it is rare.
A situation in which the condition is not satisfied
implies that in the unreinforced regions there exist
some slices whose factors of safety are smaller than
or equal to unity. Thus, if this is the case, there is
no other choice but to install additional reinforce-
ments for the failed slices and repeat steps 2) to 3)
until the required solution is obtained.

Second stage
A factor of safety is defined for each of the reinforce-
ments as follows:

where Ti is the computed tensile force, Tf ,i is the avail-
able tensile strength of each reinforcement material,
and Fsr,i = the factor of safety for each of the rein-
forcements. The stability of the slope (along the slip
surface) is ensured if the design is conducted using
sufficient values for Fsr,i.

While no discussion on the overall factor of safety
has been made so far, actually it may be necessary to
investigate from a viewpoint of the overall factor of
safety. That is, we must occasionally investigate fur-
ther when the overall factor of safety that has been
obtained at the end of the first stage is not enough in
its magnitude. Even in such a case, theoretically failure
is not presumed to occur as long as sufficient values for
Fsr,i are assigned. However, an attempt to realize the
values for Fsr,i may require impractically high strength
for the reinforcement material, indicating a failure in
design. For this situation, the problem can be easily
resolved by adding reinforcement to the slice with the
minimum factor of safety in the unreinforced regions
and by carrying out steps 2) to 3) again. More detailed
explanation regarding this matter will be given in the
following section based on an example problem.

4 EXAMPLE PROBLEM

A 7 m tall fill slope (embankment) with an inclination
of 1:1.2 is designed using the proposed method. The

554



(a) Potential unstable slope (without reinforcement) (b) Nail-reinforced slope

Local failure zone
(Local Fs <1.0)

Local Fs >1.0

Local Fs >1.0

Local Fs >1.0

Local Fs >1.0 Local Fs=1.0

Figure 2. A schematic slope without and with reinforcement elements.
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Figure 3. Example fill slope.
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Figure 4. Results for the slope with one layer of geotextile.

slope geometry, soil parameters, and the critical slip
surface obtained from the Morgenstern-Price method
are shown in Figure 3 (a). Distribution of local factors
of safety in terms of the solution procedure in Section
2.2 is shown in Figure 3 (b) by solid squares. It is seen
that the slope has a local failure zone that covers the
bases of five slices from No.7 to No.11. The overall
factor of safety is 0.982.

Geotextile is used to enhance the overall factor
of safety. The analysis was made by increasing the

number of layers of geotextile one by one from one
to four. Results are shown in Figures 4∼7. All these
are obtained under the condition for a target factor of
safety F0 to be unity for the reinforced slices.

For one layer reinforcement case the safety factor
for slice No.10 has definitely become unity as tar-
geted (Figure 4). However, the factors of safety of
slices No.7∼No.9 are still below unity. Similarly, when
two reinforcements were installed at slices No.9 and
No.10, the condition of local factors of safety to be
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Figure 5. Results for the slope with two layers of geotextile.
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Figure 6. Results for the slope with three layers of geotextile.
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Figure 7. Results for the slope with four layers of geotextile.

unity has been satisfied, but slices No.7 and No.8 still
have a factor of safety lower than unity. When the slope
is reinforced with three layers of geotextile at slices
No.8∼No.10, all the failed slices except for No.7 have
a safety factor of unity, and the overall factor of safety
is about 1.13.

When four layers of geotextile are installed for
slices No.7 to No.10, local factors of safety are all
equal to unity for the reinforced region and are greater
than unity for the remaining unreinforced regions, as
shown in Figure 7. The overall safety factor value was
found approximately to be 1.18.
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Table 1. Tensile forces (kN) in geotextiles for the example.

Slice number
Number of Overall
geotextiles No.7 No.8 No.9 No.10 safety factor

1 one layer – – – 3.75 1.035
2 two layers – – 3.46 3.71 1.085
3 three layers – 3.17 3.44 3.71 1.134
4 four layers 2.75 3.12 3.44 3.71 1.177

Table 1 shows calculated tensile forces in rein-
forcements mobilized at an incipient failure of the
reinforced zone. It can be said that failure never occurs
provided that reinforcement elements which are able
to sustain the tensile forces with a good safety margin
are actually used in practice.

5 CONCLUSIONS

A limit equilibrium-based design method for rein-
forced slopes considering progressive failure was
developed. An empirical interslice force function was
introduced to enhance the efficiency and robustness
of the solution procedure. In the proposed design
scheme for reinforced slopes, an optimization tech-
nique was contrived to determine tensile resistances of

reinforcement elements that would be required to pro-
vide an adequate factor of safety of reinforced zones.
The proposed procedure can be used to determine rea-
sonable layout of reinforcements and required tensile
strength of reinforcing material. The effectiveness of
the approach has been demonstrated by the results of a
geotextle-reinforced slope. Further research is needed
to apply the proposed procedure to practical design of
reinforced slopes.
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