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ABSTRACT: A new procedure is presented for the stability analysis of reinforced slopes considering pro-
gressive failure based on the limit equilibrium concept. A local factor of safety is defined at the base of each
slice to represent the progressive, local failure along a slip surface. An optimization approach is contrived to
determine tensile resistances of reinforcement elements at an inception of failure of reinforced zones. This
approach can be used for practical design of reinforced slopes to produce reasonable arrangement of rein-
forcements and to determine required available tensile strengths of reinforcing materials. Finally, the method

- is applied to a simple example to demonstrate its effectiveness, and the results obtained are discussed to pro-

vide guidelines for practical design of reinforced slopes using the method.

1 INTRODUCTION

Stability analyses and design of reinforced soil
slopes are conventionally performed using - limit
equilibrium methods. These methods have a com-
mon feature that a single value factor of safety
against failure is assumed for a given slip surface. In
other words, it is implicitly assumed that the peak
strength of soil is mobilized simultaneously along a
whole failure suiface. In an actual slope, however,

~ local failure may be initiated at a small portion of

high stress levels or highly concentrated zone of
shear swains. Then, the failed zone may expand
gradually or rapidly towards eventual, overall slope
failure depending on the situation. This phenomenon
of progressive failure is evidently observed in rein-
forced soil (e.g. Huang, et al, 1994). Therefore,
conventional limit equilibrium methods with a single
factor of safety are essentially incapable of analyz-
ing reinforced slopes reasonably.

The authors have already developed and validated
a stability analysis method for unreinforced slopes
considering progressive failure (Yamagami & Taki,
1997; Yamagami, et al., 1999a). In order to repre-
sent the progressive nature of slope failure using the
limit equilibrium concept, a local factor of safety at

- the base of each slice is defined and calculated. The

proposed method was extended to investigate the
progressive failure behaviour of reinforced slopes by
assuming the magnitude of rein-forcement forces

- (Yamagami, et al., 1999b).

However the method was incomplete as the rein-
forcement forces were assumed to be known. The
present study advances the former method in order
to make it capable of being used in actual design

practice. A new solution procedure is proposed
which can be used to obtain reinforcement forces
mobilized in the reinforcements at an incipient fail-
ure of the reinforced zone, and thus can be used in
arranging the reinforcement elements.

2 STABILITY ANALYSIS METHOD

An outline of the stability analysis proposed in the
authors’ previous paper (Yamagami, et al., 1999b) is
presented for the sake of completeness.

2.1 Formulation

Figure 1 shows a potential slip surface of any shape
and forees acting on an infinitesimal slice where a
tensile force, T, due to reinforcement is included.
The symbols in Figure 1 (a) include: y=y(x), the as-
sumed slip surface equation; y= z(x): the slope sur-
face equation; y=y'; (x): the equation of the line of
effective horizontal thrust; y=y, (x): the equation of
the line of total horizontal thrust; y=Ah(x): the line of
the thrust of internal water pressure. The symbols
shown in Figure 1(b) are omitted herein as they are
given in (Yamagami, et al, 1999b). As a local factor
of safety, F, is defined at the base of each slice, we
have the following; .

F= é [(c'dx-seco.+dN' tang’)

+(Tcosp +Tsinp - tang’)] (M

The slope stability problem with Equation (1) is
highly indeterminate due to introduction of local fac-
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y=h(x)
Figure 1. (a) Potential sliding mass.
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Figure 1. (b) Forces acting on aninfinitesimal slice.

tors of safety as unknowns. It has been shown, how-
ever, that the problem becomes statically determi-
nate by simultaneously introducing the simplifying
assumptions used in the Morgenstern-Price method
(1965) and the Janbu method (1957). As the solution
procedures have been given in detail in Yamagami,
et al., 1999b, this paper only presents the basic equa-
tions and the associated notation necessary to de-
scribe the analysis developed in the present study.

According to the Morgenstern-Price method, the
relationship between normal total force E and shear
force X (see Figure 1) can be expressed by

X=2{x)E o ' 2

where A is an unknown parameter. As will be shown
later, the function f{x) has to be optimized in the pre-
sent analysis.

For a slope divided into # slices, the formulation
can be carried out using a similar derivation to the
procedure by Morgenstern-Price. The basic equa-
tions from which the solution can be obtained are
shown (Yamagami, et al., 1999b):

1 1 2
E = | E. L +2N.b.2 4 (P e
i Li +Kibi |: -1+ g i (Pl +R|)b|] (3)

M, =M, + [E[M(x)~-A]dx—Tsinp-g,

Xia

bi [M(X)_Ai][E i;iLi+.Pix+%Nix '2i|
. DI L,+Kx *
—Tsinf-g,
' €]
where bi=x;-x;.;(i=0, ‘1, 2,-++ ,n), X x;.; are hori-

zontal coordinate of the left and right side of slice i,
respectively, M; [=E; (y:~y;)] is a moment of E; about
the rightmost point of the base of slice i. Note that
tensile force T; in Equation (4) is equal to zero for
slices where reinforcement is not included.

- Both Equation (3) and Equation (4) are a recur-
rence formulation. From Equation (3) a value for E;
can be calculated with a previously determined value
of E; . Substituting this value of E; into Equation (4)
yields an equation in which local factor of safety, Fi,
is contained as the only unknown. Solving this equa-
tion by, for example, the Newton-Raphson method,
a unique value of Fi can be obtained. A complete so-
lution must satisfy the boundary condition:

En=0 | 5)

A detailed solution procedure for satisfying Equa-
tion (5) will be presented in the following para-
graphs.

2.2 Solution procedure

In the Morgenstern-Price method, f(x) is taken as an
arbitrary function, for example, a constant (e.g. 1.0)
or half-sine and so on. In the Janbu method, y, is
usually assumed to be located at 1/3 of slice height.
However, the authors’ studies (Yamagami & Taki,
1997, Yamagmi, et al., 1999b) have indicated that
f{x) and y, must be optimized in the present problem
so as to obtain completely converged solutions.
Since E, is a function made up of 4, f(x) and y,, the
boundary condition shown in Equation (5) can, be
reached by optimizing the objective function in
Equation (6):

IEnlzzFun[k,fl ’f27 ’fn-l sYasYus ch-l]
3 minimize (=0) ©)

where fi=f(x;); i=0,1,2,-- -, n.

Equation (6) can be solved by an iterative proce-
dure for non-linear programming, and the Nelder-
Mead simplex method is applied in the present paper.
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Figure 2. Modeling of softening (after Law & Lumb, 1978).
Starting with a set of initial values for the inde-

pendent variables included in Equation (6), an opti-
mization process is repeated till the minimization of

. the objective function is realized (Yamagami, et al.,

1999b). :

2.3 Considering softening effect

Softening of soil can be easily considered according
to values of the factors of safety obtained in the.cal-
culation process. Since the analysis is based on the
limit equilibrium method, softening is not defined
with the amount of deformation or strain. In the pre-

sent study, it is assumed that immediately after.

reaching the peak value, the soil resistance will drop
abruptly (Figure 2) to the final residual value (simi-

lar to Law & Lumb, 1978). The iterative computa- -

tion procedure is as follows:

i) First, every slice is assumed to have peak
strength. '

ii) The local factors of safety are calculated using
the calculation procedure described in the pre-
vious section. ,

iii) If slices whose F<1 emerge, the peak strength
of such slices is replaced by residual strength,’
then the local factors of safety are calculated
again.

iv) Among the slices with peak strength, if slices
whose F<I appear, the peak strength of these

_slices' are substituted - by residual one. The
calculation is consinued until the convergence is
reached. Here, the convergence means that the
local factors of safety of the slices still holding
softening does not take place, the steps i)-and ii)
lead to convergent solutions directly.

Peak-strength (Rp) and Residual-strength (Rr) are
respectively expressed as:

Rp=c';l+Ntang'y, F<I1 : . @)

Rr=c',l+Ntany',; F<1 ®)

2.4 Overall Safety Factor

In order to evaluate overall slope stability, we define
the overall factor of safety Fouerant by a ratio between
the sum of the mobilized shear forces and the sum of
the available shear strengths along the slip surface as:
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where m is the number of slices which reach residual
strength.

If Foverall is less than 1, the slope is judged to be
unstable (or failed).

3 NEW SOLUTION PROCEDURE

The previous sections described a limit equilibrium
procedure for stability analysis of reinforced slopes,
taking progressive failure into consideration. Using
zero values of tensile forces, the procedure can pro-

- vide the local factors of safety along a given slip sur-

face within an unreinforced slope. If values of these
factors of safety are below or equal to unity at a por-
tion of the slip surface, local failure may occur at
that portion, indicating potential unstability of the
slope. In this case, a quantitasive evaluation of the
reinforcement effects can be made - with predeter-
mined tension forces of reinforcements embedded in
the slope so as to cover most of or more than the lo-
cal failure zone. However, it is rather difficult to di-
rectly apply this approach to practical situations,
since tensile forces of reinforcement elements are

-usually unknown in advance.

In this section, a new solution procedure which
can be used in practice is proposed. To explain the
procedure, it is supposed that the slope shown in
Figure 3 (a) is potentially unstable i.e. a local failure
zone with factors of safety less than unity exists

along the slip surface. It is also assumed to insert re-

inforcement elements (nails) in the slope which pass
through the bases of all slices in the failure zone, as |
shown in Figure 3 (b). Note that nails may also be
further installed in the other portions of the slip sur-
face out of the local failure zone if necessary. And
conversely they do not necessarily have to cover the

~ whole of the local [ailure zone.

Next, it is assumed that even after the nails are in-
stalled, failure of the slope, if it occurs, takes place
initially from the reinforced zone. Under this as-
sumption the slope never fails in reality provided
that the reinforcements have sufficient strength.
Then we search for tensile forces of the nails under
the constraint condition that the local factors of

" safety of the nailed slices become equal to unity.

This constraint condition implies that the reinforced
zone would be at the inception of failure along the
slip surface shown in Figure 3(b). If this is realized,
that is if the tensile forces are actually obtained, all
we have to do in design is to arrange the nails which
have sufficient strength and can sustain the tensile -
forces with a safety margin. ’
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Figure 3. A schematic slope without and with reinforcement elements.

The present problem is thus how to determine the
tensile resistance of reinforcing materials required
for the situation in which the local factors of safety
of the slices having the reinforcements are all unity.
Here, a new approach is developed to deal with this
problem by extending the authors’ previous method
(Yamagami, et al., 1999b). The proposed approach
can be summarized as follows.

3.1 Firststep

1) Stability analysis of a (potentially unstable) slope
without reinforcement is performed using the au-
thors’ method (Yamagami, et al., 1999b), and
thus local failure zones where local factors of

", safety are lower than unity are found.

2) Reinforcing elements are installed within the fail-
ure zones (and in other places along the slip sur-
face if necessary). Then tensile forces T; (i=1, 2,
...M), where M is the number of reinforcements
installed, are evaluated in order that the local fac-
tors of safety of all the nailed slices become equal
to unity.

3) Tensile forces T; can be obtained by solving the
following optimization problem: -

M 2

U=U(x)=3(R-F).

- i=1 .

where F = target value of local factors of safety

taken to be 1.0 for all the slices with reinforce-

- ments along the slip surface; F; (i=1, 2, ....M) =
local factors of safety computed.

4) Giving an initial value of tensile force T; of each
reinforcement element, the optimization problem
shown in Equation (10) can be solved by an itera-
tive procedure (for example, by the simplex
method). Finally, T; values (i=1, 2, ....M) of rein-
forcement elements can be obtained which make
the local factors of safety of all the nailed slices
equal to their target values (1.0 for the present
case).

5) If the local factors of safety of all unreinforced
slices are greater than the given target values, the
results obtained in 4) are regarded to be the re-
quired solution. Otherwise, reinforcement ele-

Minimize U(—0) (10)

ments are re-arranged and then steps 2) to 5) are
repeated until the above-mentioned condition is
satisfied.

The procedure described above is illustrated in Fig-
ure 4.

Analyze the slope without reinforcement using the
method proposed by Yamagami, et al. (1999b)
; E [

Reinforcement elements are installed
[within the local failure zones ]
1t
LGive target values of local factorsJ
of safety for all the reinforced slices

: L

Set up initial values of 7; for 5

each reinforcement element Sy

g [

] = |f

7 & &l {2

Compute local factors of safety using &8 =
the given values of T; (i=1, 2, .... M) || i @
B =R

! ' =815

| Calculate U in Equation (10) | | £ v

g 5lle

No Y qg

E

'I} values are obtained which make the’
local factors of safety of all nailed slices
equal to their target values

\

Figure 4. The proposed procedure.
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The values of tensile forces obtained from the
above computations correspond to a situation where
the reinforced zone(s) is (are) at the inception of
failure along the slip surface.- Consequently the fol-
lowing step describes a new concept for design of a
stable slope by reinforcements.

3.2 Second step

If available tensile strength provided by the i-th rein-
forcement element is denoted by Ty ;, a factor of
safety regarding the reinforcement material can be

- defined as follows:

FSFTf% (i=1,2, ccoeeey M) an

where T; = tensile forces of the reinforcement ele--

ments which are obtained on condition that local
factors of safety of all the reinforced slices along the
slip surface are equal to unity. If the reinforced slope
is designed using a sufficiently large value of F,
then the stability of the slope will be ensured.

-1 «--thrust line(without reinforcement) Noo
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2 2l ¢ 276 , 6 22346
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1012 3 456 7 89
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- I_(a) Slope profile and reinforced zone

8 .
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s (Foverall=0.908)
.E‘ 6| -with reinforcement(Nos.5,6,7,8)
H 5. (Foverall=1.264)
Lff" .
© 4f target local factors of safety = 1.0
o .
-~ 3 n .
& | .
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S et “te.,,
L .
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x-coordinate(m) -

(b) Local factors of safety

Figure 5. Simple example (four reinforcement elements).
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4 EXAMPLE

Figure 5(a) shows a simple and homogeneous slope
and a given slip surface which is the critical one ob-
tained from the Morgenstern-Price method. Slice di-
vision and soil parameters used for computations are
also shown. The distribution of local factors of
safety for the unreinforced slope is illustrated in
Figure 5(b) by a line with solid squares. It can be
seen from Figure 5 that the slope has a local failure
zone that covers the bases of five slices (No.5 to
No.9). This implies that the slope shown in Figure 5
(a) is potentially unstable.

Now we first assume that four nails are installed

" in the local failure zone which pass through the

bases of slices No.5 to No.8 respectively, as shown
in Figure 5(a). The proposed solution procedure was
carried out on condition that the local factors of
safety of all the reinforced slices reach unity. Table
1 lists the tensile forces of four nails which are the
optimal solution obtained by minimizing the func-

‘tion U.in Eq.(10). Figure 5 (b) shows the local fac-

tors of safety along the slip surface after reinforce-
ment. It can be seen that the local factors of safety of
reinforced slices almost reach their target value
(though the local factor of safety of slice No.5 is a
little greater than 1.0). The above results indicate
that if the nails are designed to provide sufficiently
larger available tensile strength than those shown in
Table 1, the stability of the reinforced slope will be
ensured.

Figure 6 (a) illustrates a case where three rein-
forcement elements (nails) are installed in the local
failure zone. Table 2 lists the tensile force values of
the three nails which make the local factors of safety
of all the reinforced slices equal to unity. Note that
the local factors of safety of the slices without rein-"

. forcement are all larger than unity (see Figure 6 (b)}.

The results shown in Figures 5 and 6 indicate that
the proposed method can be used not only to deter-
mine the necessary tensile strengths but also to ob- -
tain a reasonable arrangement of reinforcements. -

5 CONCLUDING REMARKS

A new procedure for stability analysis of reinforced

- slopes has been presented based on limit equilibrium

taking progressive failure into consideration. This

- procedure can be used for the design of effective ar

Table 1. Computed values of tensile forces T

Slice No. No.5 No.6 No.7 No.8
T; (kN) 0.832 0.810 1.696 2.059

Table 2. Computed values of tensile forces T

Slice No. No.6 No.7 No.8
Ti(kN) 0.454 2.370 2.284
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Figure 6. Simple example (three reinforcement elements).

rangements of reinforcing elements, because it can
identify the locally failed zone or the most unstable

zone along a given slip surface. Also, based on the
proposed procedure, the required tensile forces of
the reinforcements can be determined to render the
local factors of safety in the local failure zones to be
equal to unity or given target values greater than
unity. If the design is performed to provide suffi-
ciently larger available strength of reinforcements
than the tensile forces, stability of the reinforced
slope would certainly be ensured. The proposed pro-
cedure, therefore, provides a useful tool for practical
design of reinforced slopes.
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