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Limit design of earth reinforcement methods considering displacement field
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ABSTRACT: This paper proposes a limit design technique for slope and retaining wall reinforced by
geotextile, which is tentatively called LSFEA (Limit State Finite Element Analysis). LSFEA, which is
fundamentally based on the initial stress method for nonlinear stress-swain analysis in FEM, aims to fill
alarge gap existing between FEM and LEM (Limit Equilibrium Method) which is a traditional design
technique also in earth reinforcement problems. LSFEA employs Mohr-Coulomb and Coulomb yield
criteria respectively for soil mass and friction interface. By assuming a linear elastic response before
yielding and a non-assaciated flow rule after yielding as a stress-strain relationship, LSFEA provides a
definite collapse mode similar to a potential slip surface assumed in LEM. It is difficult for LEM to
consider the kinematical condition at failure and the stiffness of material. LSFEA enables to
compensate for most of these defects in LEM, because LSFEA is based on FEM. LSFEA can be
effectively applied to stability problems in which the kinematical condition and material stiffness largely

affect the solution.

1 SUMMARY OF LSFEA

LSFEA should be regarded as a modified initial
stress method for nonlinear stress-strain analysis
which was originally developed by Zienkiewicz et al.
(1969). LSFEA applies the initial stress method at
only one loading stage as illustrated later in Fig. 3,
by assuming both linear elastic response before
yielding and the non-associated flow rule after
yielding.  As the result, LSFEA changes the
distribution of yield finite element in the iteration
cycle for the initial stress method. These two
operations seem important for finding a reasonable
failure region of the stability problem.

Yield Criterion: : Mohr-Coulomb and Coulomb yield
criteria are employed respectively to soil mass and
the friction interface between structure and soil.

Mohr-Coulomb: Fj=

{(o,- y)z'r4rxy2}“2 -{(o+oysing+2¢ cos$}=0
Coulomb:

Fe=d -c -g,tan¢=0 @

where g, O, and T, stress components, O, normnal
Stréss, < : shear stress, and ¢ and ¢: strength
Parameters. For the friction interface we employ the
thin layer finite element proposed by Desai et al.
(1984).

Stress-Strain Relationship : Both for Mohr-Coulomb
and Coulomb materials, a linear elastic response is
assumed before yielding. Subjected to Coulomb
material, Fig. 1 schematically illustrates the
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Fig. 1. Stress-strain relationship (Coulomb material)
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relationship between stress vector {o} and strain
vector {¢}. Point B in Fig. 1 corresponds to a final
equilibrium state at an arbitrary position within a
failure region. Considering the stress history, it
seems reasonable to assume that the stress trajectory
firstly attains to the yield surface not at the final state
B but at another point A in Fig. 1. Asseenin Fig.
1, after reaching the yield surface at point A, it is
assumed that the stress path moves along the yield
surface, and that the movement along the surface is
purely plastic. At the plastic state, we employ the
non-associated flow rule and a plastic potential
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defined by Fig. 2 and the following equations (see
Mroz, 1980).

Mohr-Coulomb: Q)=
{(Ux‘oy)z"""‘xyz}“ 24 (o,+0y)sinv+2g cosv}=0
Coulomb :

Qc=td -g =0 @

where g: a hypothetical parameter which is not cited
actually, because Eq. (2) is used only by its
differential form, and v: dilatancy angle (see Fig. 2a)
which is considered to be zero in this paper. By
using the yield criterion and plastic potential, the
swess-strain relatinship at plastic state is given as

{d0)=[D¥){eP} - 3)

where {60}:étress increment at plastic state,
{eP}:plastic strain (see Fig. 1), and [Der]:

stress-swrain matrix at plastic state which is calculated '

by as well known formula (see Zienkiewicz et al.
1969). Both soil mass or Mohr-Coulomb material
and friction interface are assumed not to bear tensile
stress.

Mohr-Coulomb: 6520, Coulomb: 5,20 ~ (4)

Numerical Procedure : Since we are concerned with

only the final equilibrium state of soil-structure, the
initial stress method is applied at only one loading
stage as shown in Fig. 3, where initial stress {og}
and elastic stress {og} are defined. Such an
application of the initial stress method makes it
necessary to modify a part of methed. Fig. 4 shows
the flow chart of numerical procedure, where {u}:
nodal displacement, [K]: stiffness matrix, {f}: total
load vector, [B]; matrix for calculating strain
components from {u}, and V: volume of the
element. Referring to Figs. 3 and 4, we must decide
simultaneously two kinds of stresses, yield stress
{0} and initial stress {og}. {og} is determined so
as to satisf'y the iteration loop shown in Fig. 4, while
{0} has to be isolated by an appropriate assumption
because we do not necessarily follow the loading

‘history but are concerned with only the final

equilibrium state. Arai (1993) tried to isolate {o, }

so as to minimize the total plastic work until the final
state. The minimization of total plastic work

requires a lot of computational effort, and {c 4} must

. be determined many times in the iteration step as

stated later. Thus in this paper we employ the
following simpler and more practical method which
was proposed Zienkiewicz et al. (1969). As shown
in Fig. 3, {o7} denotes an actually initial state of

stresses. Referring to Fig. 3, assume as

(ou=({opr {og-{a) )
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Fig. 2. Non-associated flow rule
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Fig. 3. Initial stress method
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Fig. 4. Numerical procedure

By linear ‘interpolation, r is found for Coulomb
material as _

r=-Fl{oiH/lF{og}-Fc({o})] (©)

When applying this method to Mohr-Coulomb
material, due to nonlinearity in the yield function, we
must employ a better estimate of r proposed by
Nayak et al. (1972) -

Iteration Scheme : Stagel: Assume the trial values'Of
initial stress {0y} to be zero. Stage 2: Determine

{oo} and {o} by the following steps. 2a) Applying
both total load vector {f} and correction load vector



{fo}=[B1™{o(}V, solve the elastic problem. 2b)
Find the yield finite elements which attain to the state
of plastic equilibrium. 2c) For the yield finite
elements, determine yield stress {a,} by Egs. (5)
and (6). Once {o,} is decided for each yield
element, the value is stored and used throughout
Stage 2. 2d) Calculate final stress {og} in Fig. 2,
using {0} found at step 2c). And modify initial
stress {Og}={og}-{oB}. 2e) Repeat steps 2a) to
2d) until convergence is obtained. Stage 3: Repeat
Stage 2 several times, by replacing the initial stresses
at the first cycle with those obtained at the preceding
stage, until the change in {og} reaches a sufficiently
small value. Stage 3 is required because both the
yield finite elements and the initial stresses decided at
Stage 2, are those corresponding to a particular yield
stress {04} which was determined against the
initially assumed values of initial stresses. The
constraints given by Eq. (6) is satisfied easily by the
initial stress method (see Zienkiewicz et al. 1968).

2 APPLICATIONS
2.1 Example 1

The first example (see Fig. 5) considers the effect of
reinforcement in slope stability problem. In all the
following case studies, actual initial stresses in soil
stratum {o;} are supposed negligibly small. The
material parameters are also given in Fig. 5, where E:
Young's modulus, p: Poisson's ratio, y: unit weight,
and A: area of cross section of geotextile. The
geotextile is represented by a conventional truss
element, and is assumed to bear no compressive
force. Fig. 6 shows the failure region or the
distribution of yield finite element provided by
LSFEA when changing safety factor of shear
strength Fg, which is defined as

Fec,, | c=tan¢,, / tan¢ (7)

where c, ¢: actual strength parameters introduced
previously, and c,,, ¢,,: current and provisional
strength parameters. ~ Since the calculation of Fg
requires to suppose such a hypothetical condition,
some combinations of Fg and the values of strength
parameters happen to produce an unreasonable
collapse mode different from the actual mode likely
toexist. In Fig. 6, note that the succeeding result
for each Fyis found by regarding each state as a final
equilibrium state, and the result is independent of the
preceding state for smaller Fg. Fig. 6 shows also
the tensile region at which Eq. (4) is satisfied only by
using the initial stress method. When applying

to a slope stability problem, we increase the
value of Fg step by step as seen in Fig. 6. We
decide the critical value of Fg by using the first

geotextile E=3920 MPa A=0.001 m?2

\ T T T T T T
E=2.94 MPa p-0.33
2 c=14.7 kPa ¢=n/dn
20 m N =16.7 kN/m3—h
Pl
4m ["TE=19.5 MPa 41-0.33 c=004 kPa g=n/6]y=16.7 kN/m3
|5 ml 30 m 40m

Fig. 5. Finite element model in Example 1
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Fig. 6. Failure region (reinforcement)

tensile force

B em——— 100 kN/m
ﬁ

Fig. 7. Tensile force distribution on geotextile

occurrence of a global collapse mode. The global
collapse mode herein means that the yield finite
elements distribute continuously from the toe to the
top of slope as seen in Fig. 6(d). Being diiferent
from the assumption employed in traditional design
scheme, at the collapse state the reinforcement
method tends to enlarge considerably the failure
region outside of reinforced area. However it
should be repeatedly emphasized that the failure
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Fs=1";%‘h°d Fig. 9. Finite element model in Example 2
Table 1. Material Constants in Example 2
r - E G| ¢ [ v y.
{ MPa| # |MPa| kPa | deg. | deg. |kN/m?®
_ (c) Fs=1.14 retaining wall 5880 (0.16) — [ 490 | 45 | 0 | 216
Fig. 8. Failure region (no reinforcement) f;':fg;!:lu a9 o3| ~| o3| o059
foundation 98 103 | — 49 | 30 0 0
e . . ground
' region shown in Fig. 6(d) is created for the :‘:{f::g E:L:;;" 49103149 0120 ] — | —
hypothetical strength parameters reduced by Fg. interface between | 9.8 [03 | 49| o 20| — | _ -
Fig. 7 illustrates the distribution of tensile force wall and foundation
o acting on reinforcement material at the final state. =
- Fig. 8 shows the failure and tensile regions when no e o ant o of st
-reinforcement is employed. Fig. 8(c) shows also s Pl bty
e : - the critical slip surface and the safety factor given by 0 omm O 50 100°kPa
. . the simplified Bishop method in which a slip surface - horizontal earth  principal stresses By ourtace method
E is assumed to be circular. LSFEA and the simplified"~ pressure (kPa) S\ fatiure elements
Bishop method provide a close value of safety factor, 20 10 0 —
- while these two methods create a little different _ /‘ Wb |4
failure region. Comparing Fig. 6 with Fig. 8, the = i =
_ earth reinforcement in this particular case, appears to ' B )f_
] increase the safety factor from 1.1 to 1.25. :
i Conventional design concept for earth reinforcement LW M. X
method which is based on LEM, tends to evaluate a v " h g
reinforcement material only by its final strength, and i Ly o D
to neglect its stiffness which restricts the deformation il it
of soil mass'and which may largely contribute to the e - ==
improvement of slope stability.  LSFEA enables to @!ﬁflm_eli‘l’r T
o discuss the plastic equilibrium state and collapse - - '
) mechanism, considering the stiffness of material and (a) No reinforcement
s the displacement field of geotechnical structure. ' scsle of
: horizontal eaith  dleP'acement
- : : ~ Prooouro (kPa) g0, faliure elements
? 2.2 Example 2 o ' ‘ — /“1
The second example (see Fig. 9) considers the lateral N / wrhee muterlal
earth pressure problem where two sheets of truss ' | IS a _
material are spread within the homogeneous backfill _ ! =T Jso'z’ 'Yl
and connected to the rigid retaining wall. The values §-32
of material constants are given in Table 1. The ?;'39-3‘““ y }( 100 £5
reinforcement material is represented by the A = 0‘1:§§
assemblage of truss elements and supposed to bear Wi | -|sog_8%
compressive force only in this particular example. s )
The stiffness of reinforcement material is 3.92

MN/m. Fig. 10(a) illustrates the results calculated - (b) Reinf ;
by LSFEA when no reinforcement is employed. . ] el orf:emen
Fig. 10(b) shows the results by LSFEA when the Fig. 10. Result in Example 2
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Fig. 11. Field test

reinforcement shown in Fig. 9 is applyed. In Fig.
10, the broken line represents the displacements of
wall and backfill, P, active thrust by LSFEA, and

P, active thrust given by Coulomb method in
which a triangular distribution of earth pressure is
assumed. The truss material reduces about 27% of
the active thrust. Note that irrespective of earth
reinforcement, both the failure region and wall

movements are almost the same as seen in Figs. 10
(@) and 10(b).

2.3 Example 3

The third example (see Fig. 11) studies a test -

embankment reinforced by geogrids and non-woven
geotextiles, which was actually constructed in
Kanazawa, Japan. Fig. 11 illustrates the
longitudinal cross section of field test. When the
supporting embankment shown in Fig. 11 is
removed, the test embankment has an overhanging
slope at angle of 60 deg. to the ground surface. The
detailed explanation of construction procedure,
observed performance and so on are reported by
Goren et al. (1984). The test embankment was
carried out twice at the same place. The first test
employed a strong and highly stiff geogrid, and the
overhanging embankment was stable. The second
test used a weak-and less stiff material, and the test
embankment had failed before the supporting
embankment in Fig. 11 was removed completely.
Fig. 12 shows the finite element meshing and
material constants employed. The results calculated
by LSFEA are given in Figs. 13 and 14. Especially
the def ormation behavior illustrated in Fig. 14 may
agree fairly well with the observed results in the field
test. It is interesting to note that the failure region
spreads considerably within the embankment as seen
In Fig. 13(a), whereas the deformation of
embankment appears small. '

3 CONCLUSIONS

The results of case studies prove that LSFEA
provides a physically reasonable solution of earth
reinforcement problem. LSFEA does not intend to
simulate soil behavior but does to be applied to the
Practical limit design based on stability analysis. It
IS important to emphasize that LSFEA produce a
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Fig. 12. Finite elementmeshing in Example 3
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definite collapse mechanism similar to the potential
slip surface assumed in LEM, and that the collapse
mechanism is supported by a kinematically
admissible displacement field, statically admissible
stress field, and a suitable stress-strain relationship.
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