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1 INTRODUCTION 

Reinforcing of soils with geosynthetic materials takes 
place in practice of road construction more widely as 
autors of proceedings of EuroGeo1 (1996), EuroGeo 2 
(2000), proceedings of Sojuz-dornii (1998), (2001), 
L'VOVICH (1998) have alrea-dy mentioned. 

Methods of calculation of pavements and the reinforced 
bases are developed basically by empirical way. Common 
fault of existing methods is traditional design procedures 
with continuous, homogeneous, isotropic layers attraction 
for calculation of the reinforced designs being in essen-ce 
constructive - anisotropic.  

Strictly speaking, soils, synthetic materials of which 
reinforcing structures are made, have no properties of 
ideally elastic material, and their diagram of deformation – 
not linear. Therefore the stated approach to construction 
of settlement model of the reinforced ground in elastic 
statement is considered by us as the first approximation 
which further will be improved.  

2 GEOMETRICAL, PHYSICAL AND STATIC  
EQUOTIONS 

Let's consider the multilayered plate consisting from m of 
layers. We shall designate thickness of layers h1, h2, ., 
hm. Let coordinate plane XY coincides with the top 
surface of a package of layers, axis Z is directed 
downwards (fig. 1) and the next equations 

takes place 
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Fig. 1. The scheme of an arrangement of layers 

Let's assume, that for all package of the elastic layers 
rigidly connected among themselves, hypotheses of 
Кerhoff-Love are fair. Thus physical parities should be 
carried out separately for each layer by virtue of that 
different layers can have various structure of reinforcing 
and consequently, various characteristics thermoelasticity:  

.AA;TAA

;uDCuD;uCu
iii

T
i
T

ii
00

α=−ε=σ

==ε=
                              (2) 

Here u  - a vector of movings of an any point of a plate; 

0u  - a vector of movings of points of coordinate plane XY; 

ε  - a vector of deformations; 
ii,ασ  - vectors of 

strenghs and coefficients of temperature deformation in  “i”  

layer; 
i
ТА  - a matrix of  thermoelastic characteristics: 
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Here D,C – are the matrixes of differentiation; iA – the 
matrix of elastic characteristics in  “i”  layer: 
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Expressions (2) - (4) are written down for the general 
case, when a material of “i” layer is anisotropic. In 
ortotropic material  factors i

xy
i
Т3

i
23

i
13 ,A,A,А α     

are absent. 
On thickness of “i” layer the temperature changes 

according to linear dependence  

( ) zttzT 1i0i
i += ,                                                    (5) 

Where 1i0i t,t  - is the given constants.  
    The differential equations of balance of an infinite-

small element of a plate are 
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Here xyyx N,N,N – are tensile and shearing forces in a 
plate:  
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Qx , Qy  - cross forces in a plate:  
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X , Y, Z – projections to coordinate axes equally ef-fective 
the volumetric forces, taken on thickness of a plate; 

−−−
zyx q,q,q - external loading on a plate (at z = 0); 

+++
zyx q,q,q - reaction of the elastic basis (at z = Hm): 
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Here Cz – is the factor of bed, Cx, Cy - factors of 
coupling; fx, fy - factors of friction.  

If the “i” layer of small thickness iih δ= is reinforced with 

geonet, or geogrid or geotextile, we propose, that stresses  

x
iσ y

iσ and 
i
xyτ on thickness of the given layer are 

constants, therefore in the equations (7), ), in components, 
concerning to the “i” layer, we shall make replacement of 
integrals.  
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. 
First two equations (6) we shall multiply on zdz, 

integrate on z and after transformations in view of 
equations (9) we shall receive following:  
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     Here xyyx M,M,M –  are the bending and twisting 
moments in the multilayered plate, determined under 
formulas  
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yx R,R – the total moments, created by volumetric 
forces. 

          If the “j” layer of small thickness jjh δ=  is 

reinforced with geonet, or geogrid or geotextile, we 

propose, that stresses x
jσ  and y

jσ on thickness of the 

given layer are constants. therefore in the first and second 
equations (11), in components, concerning to the “j” layer, 
we shall make replacement of 

integrals ∫∫
−−
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If we substitute equations (7) in (6), аnd also take 
in account  (2)  аnd (5), after integrating we shell 
obtain  

( )
( ) ( )TxyТyТxТТ

T
xyoyoxoо

T
xyyxTo

N,N,NN;N,N,NN

;N,N,NN;NNN

==

=−=
 (12) 



 741

where N  - is the vector of tensile and shearing stresses; 

оN  - vector of the same stresses, caused by tensile and 

bending strains; ТN  - the same, from temperature 

influences.  

Components of a vector оN : 
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Components of a vector ТN : 
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Constants  pi  in formulas (14)  are determined from 
expressions (19). 

Substituting (11) in (10), and also taking into account 
dependences (2) and (5), after integration we shall receive  
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Here M  - is the vector of bending and twisting moments; 

оM  - vector of the same stresses, caused by tensile and 

bending strains; ТM  - the same, from temperature 

influences.  

Components of a vector оM : 
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Components of a vector ТM : 
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Constants 
( )3,2,1l,kd,c,b klklkl =

 are determined from 
expressions  
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Constants ii g,p  in formulas (14), (17) and (18) are 

determined from expressions  
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In the event that reinforcing of the “j” layer are made with 
use of geogrid, geonet or geotextiles, it is ne-cessary to 
make the changes concerning constants 

( )321kxyyxsbN klst ,,;,,,, ==  to formulas (14) and 

(18): 
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Substituting xQ and yQ from expressions (10) in the 
third equation (6), we shall receive differential equation of  
bending of a multilayered plate  
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Here 
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Parameter q1 includes the information about external 
loading, and q2 – the same about reaction of the elastic 
basis.  

3 LONGITUDINAL - CROSS BENDING OF THE   
POLYREINFORCED PLATE  

3.1 A conclusion of the differential equation of the 
bending  

To show the mechanism of reception of the decision of 
a problem of a longitudinal - cross bending multi-layered 
constructive - anisotropic plate on the elastic basis we 
shall consider the elementary case, when in regular 
intervals distributed loading 

−
zq  directed down-wards is 

applied on all surface of a plate. The plate is in a 
stationary temperature field, constant in plane XY, and 
varied piecewise linear in the direction of axis Z according 
to dependence (5), linear within the limits of each 
separately taken layer of a plate. As longitudinal we shall 
choose a directi-on X, and as cross - Y. We shall assume, 
that the longitudinal edges of a plate parallel to an axis X 
are free, and cross, parallel axes Y, are rigidly jammed.  

Therefore for it the next condition are satisfied  

.0xyy =τ=σ .                                                 (23) 

Substituting (23) in (7), we shall receive  

0NN xyy == .                                                      (24) 

Let's assume, that superficial and volumetric loa-dings 
X, Y, Z on a plate are absent. We shall reduce a problem 
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of a longitudinal - cross bending of the polyreinforced plate 
to a problem of a cross bending. For this purpose first of 
all we shall exclude the tensile and shear strains in 
expressions (13) and (16). Expressions (13) in view of 
equality (24) will become  
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In each of the equations (25) we shall unit compo-sed 
not containing stretching and shear strains  

oxyoyox ,, γεε , having designated them according-ly: 
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Then expressions (25) will become 
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System (27) we shall solve concerning deformations.  

oxyoyox ,, γεε . Using Кrамеr’s rule, we shall write 
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From (28) with the account (26) we shall receive  
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Substituting (30) in (16), we shall receive 
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   Thus, instead of two groups of the equations (12) and 
(15) we come to one group (33). It allows to reduce a 
problem of a longitudinal - cross bending of a 
polireinforsed plate to a problem of a cross bending. 
Substituting equations (33) in the differential equation of a 
bend of a plate (21), we shall receive  
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        As we deal with a cylindrical bending of a plate in the 
differential equation (35) all derivatives on y we believe 
equal to zero. Besides for simplification of the decision as 
a first approximation we believe equal to zero factor of 

friction .0fx = Having divi-ded all staying composed 

on ∗
11d , we shall receive the following equation:  
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The equation (37) is the non-linear differential equation 
of the fourth order. 

3.2 The decision of the differential equation of a 
bending of the polyreinforced plate 

For the decision of the differential equation we search on 
A.N.Krylov's named method or initial parameters the 
method:  
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through initial parameters 
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Regional conditions of a problem:  
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The maximal deflection we shall determine from 
expression  
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3.3 A numerical example  

Let's consider a four-layers plate which each layer is 
executed from isotropic material with the following 
parameters:  
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Components of matrixes 
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are calculated under formulas of the flat intense condition:  
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Let's set the following numerical values of factor of bed, 
intensity of the distributed loading and lengths of a plate:  

.;;/ m4LКPа60qmМPа5C zz === −
 

Let's receive  

.,;, max m1029123wm54110 41 −− ×==β  

Let's make changes to conditions of a problem. We 
shall consider the same problem under condition of 
reinforcing the fourth layer by the cellular confined system 
having rhombic form cells with diagonals, equal 0,2 m and 
thickness of walls of 0,001 m.  

Characteristics of a ground are 

.,; 350МPа40Е 44 =ν=  

The module of elasticity of a cellular confined system is 
.МПа393E =  

Matrix 
( )4A of the fourth reinforced layer it is determined 

by a technique stated in work of 
Nemirovsky (2002): 

 

( )
















=

98,1500
0324,46113,17
0113,17324,46

A 4
 

As a result of calculations we shall receive  
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Comparing values of the maximal deflections of two 
designs, we see, that in the second design they are lower, 
than in the first. In figure 2 the diagram constructed on the 
basis of the numerical data, received is given as a result of 
the decision of a problem at different values of factor of 
bed.  

 
Fig. 2. Dependence reinforsing effect from rigidity of the basis  

From the diagram follows, that influence of reinfor-cing 
of the fourth layer by a cellular confined system on rigidity 
of all design in the greater degree is shown on the weak 
bases and tends to decrease at increase of rigidity of the 
basis.  

4 CONCLUSION  

The stated theory of calculation of multilayered plates on 
the elastic basis with the reinforced layers enables the 
account of various kinds of reinforcing at calculation of 
designs on the elastic basis. It shows, that the behaviour 
of a design depends on character reinforcing structures, 
properties reinforcing materials, rigidity of the basis. 
Varying these parameters, it is possible to predict 
behaviour of a design and also to create designs with 
preset properties.  

заранее заданными свойствами. 
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