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1 INTRODUCTION 

Rock fall protection reinforced soil structures feature high 
energy absorption, to deal both with high energy impacts 
and with “swarms” of falling boulders. For the design of re-
inforced soil rock-fall protection walls and embankments, it 
is important to afford a mathematical model able to pro-
vide, easily and quickly, the order of magnitude of forces 
and deformations due to a given impact. 

Mathematical models of reinforced soil structures sub-
ject to dynamic impacts have been developed, based on 
ballistic, structural mechanics and soil mechanics princi-
ples. In this paper the Authors wish to present the state of 
the art in this peculiar field. 

2 EARLY MODELS 

Very rough methods are present in bibliography, which can 
be used for a first evaluation of the behaviour of a soil 
rockfall passive barrier. As the evaluation of the effect of 
the impact of a block having high kinetic energy on a soil 
structure is extremely complex, defining the energy dissi-
pation mechanism and the collapse mechanism through a 
close form equation is an operation that may require some-
times unacceptable approximations. 

The collapse mechanism that has to be taken into ac-
count is for sure the rock block passing through the struc-
ture; according to this failure mechanism the thickness of 
the barrier in the impact point seems to be a very important 
parameter. 

Overturning of the structure doesn’t seems to be a sen-
sible failure mechanism, also taking into account the im-
portant downward vertical component of the block speed; 
in certain cases also a structural collapse due to excessive 
deformation of the barrier after the impact can be consid-
ered as realistic. 

The first type of close form equation used to evaluate 
the behaviour of a soil barrier as a rock fall passive protec-
tion system has been proposed by Kar (1978). 

This method is based on ballistic principles and derives 
from true scale tests performed to evaluate the penetration 
depth of bombs and missiles on soil protection shelter 
structures; it is characterised by a series of empirical equa-

tions whose result is mainly the expected depth Z in the 
impact area: 
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Where:  
E   (kPa) is the elastic modulus of the impacting block; 
Es  (kPa) is the elastic modulus of the steel (tests have 

been conducted with missiles); 
m  (kg) is the block mass; 
d  (cm) is the impact dimension; 
V  (m/sec) is the block speed; 
N  is a shape coefficient; 
Y  is the unconfined compressive resistance. 
 
The main problem of this method, apart from applying a 

ballistic method to a soil structure whose function is to act 
as a barrier, is given by the fact that, among the required 
values, the only one that characterises the soil barrier is 
the unconfined elastic modulus. If it is easy to evaluate this 
modulus for a rock or for a cohesive material in undrained 
condition (for example through unconfined compressive 
tests), it is almost impossible to determine the same value 
for a frictional material.  

Since almost all the rockfall barriers are made of a fric-
tional soil, hence the method gives values that can be 
dramatically wrong, just for the difficulty to use the proper 
design values. 

Another approach allows to determine the maximum 
force Fmax applied to the centre of mass of the block (and 
the maximum deceleration), and to determine the maxi-
mum penetration d applying the principle of conservation 
of the momentum. 

If we assume that the deceleration of the block occurs 
during the time elapsed from the instant when the block 
touches the barrier and the instant when it is stopped, and 
we also assume that the impact force passes from the 
maximum value to zero during the same elapsed time, the 
work made by the impact force can be calculated as: 

dF
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As the work done by the impact force is equal to the ki-
netic energy dissipation, we can write 

2
max vm

2
1dF

2
1

⋅⋅=⋅⋅  (3) 

and finally  

F
vmd

2⋅
=  (4) 

where m is the block mass, v is the block speed and F 
is the force applied to the centre of mass.  

To evaluate the maximum force it is possible to use the 
formula proposed by Montani et al. (1996). This formula, 
however, has been used to evaluate the impact of rock 
blocks falling over the protection cover system of artificial 
tunnels: again it is not describing the real situation. Accord-
ing to this approach, the maximum force can be calculated 
as 

5/35/35/15/2
Emax HWRM765.1F ⋅=  (5) 

where Me is the elastic modulus of the soil (it can be 
determined as EV1 from a plate bearing test), R is the cur-
vature radius of the impact block (assumed as spherical), 
W is the block weight and H is the fall height.  
Another possibility to evaluate Fmax derives from a correla-
tion proposed by Mayne et al. (1983) that derives from 
heavy tamping soil consolidation experience: 
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=  (6) 

where W is the block weight, ro is rock block radius, H is 
the rock fall height, ν is Poisson coefficient and G is the 
soil shear modulus.  

Comparing the results derived form true scale tests 
with the values obtained with the equations above, it is 
possible to notice how Kar method overestimates the 
depth, while the other methods underestimate it (Recalcati 
et al., 2001).  

The lower depth and the much higher forces obtained 
through Montani or Mayne approaches derive from the 
greater rigidity of the elastic half-space in respect to the 
real structure, which has a finite shape, is not elastic and 
can be subjected to relative displacements between rein-
forced layers. 

Table 1 Comparison between calculated and experimental results 

Model Depth [mm] Fmax [kN] 
Kar 1170 2306 
Montani et al. 130 22160 
Mayne et al. 220 11742 
Real test  700 - 

3 ANELASTIC IMPACT MODEL 

More realistic results can be achieved through a mathe-
matical model based on the physics of anelastic impact 
phenomena.  

According to the theorem of Carnot, during an anelas-
tic impact part of the kinetic energy of the colliding bodies 
is lost. The larger loss occurs for a perfectly anelastic im-
pact, that is when the two colliding bodies completely melt 
into a new entity. Let’s calculate the loss of kinetic energy 
during an anelastic impact between two bodies. Let’s sup-
pose that the two body have translational motion; indicat-
ing with u their common velocity after a perfectly anelastic 

impact, the kinetic energy before and after the impact is 
given by: 
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2
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The loss of kinetic energy is equal to K0-K1. 
After mathematical development of Eqq. 7 and 8, we 

obtain: 

( ) ( )2x2x2
2

x1x110 uvM
2
1uvM

2
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The differences (v1x-ux) and (v2x-ux) show how much the 
velocity of the two colliding bodies has decreased. We can 
call them lost velocities during the impact. Then from Eq. 9 
derives the following theorem of Carnot: the kinetic energy 
lost by the system of the two colliding bodies during a per-
fectly anelastic impact is equal to the kinetic energy that 
the system would have if the two bodies move with the lost 
velocities. 

In case of anelastic impact against a firm body, it is v2  = 
0 and: 
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When the mass of the impacted body is far larger than 
the mass of the impacting body (M2 >> M1), we can write: 

0
MM

M
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1 ≈
+

 (13) 

In this case Eq. 12 gives: K1≈0. 
Therefore during the impact almost all the kinetic en-

ergy is pent for deforming the colliding bodies; at the end 
of impact the two bodies can be considered as firm. 

If the impact is not perfectly anelastic (k = u / ν ≠ 0), 
from similar considerations we obtain the loss of kinetic 
energy during the impact: 
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The common speed after impact is still given by Eq. 11. 
Let’s make now reference to structures with vertical or 

sub-vertical front and back faces, with horizontal rein-
forcements (see Figure 1), subject to the impact of a 
spherical block having velocity with both downward vertical 
component and horizontal component. Let’s also suppose 
that the impact, beside the deformation of the barrier, pro-
duces a rigid rotation of the reinforced soil structure, as it 
can be seen in the same Figure 1.  

In such case the centre of rotation is moved downward 
in respect to the impact area, due to the vertical compo-
nent of the block speed and to the stiffness of the face. 
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Figure 1 Scheme of the structure used for the anelastic impact 
model (from Borroughs et Al, 1993) 

The “angular momentum” of the boulder-soil system before 
(suffix “b”) the impact is: 

( ) hvm rr0b
⋅=Γ  (15) 

while after (suffix “a”) the impact it becomes: 

ω+⋅⋅=Γ
3
Hmh)vm(

2
w

r0a
 (16) 

where:  
h   distance between the centre of gravity of the boul-

der and the centre of rotation; 
H  height of soil above the centre of rotation; 
ω  angular velocity of the boulder-wall system; 
mr , mw mass of the rock and of the wall; 
vr  velocity of the rock. 
 
Since there is no other external action during the im-

pulse except gravity (whose static moment is not signifi-
cantly large during the impulse), it must be: 

ab 00 Γ=Γ  (17) 

or 

hvm
3

Hmvmh rr

2

wr ⋅=ω+⋅  (18) 

Given that the collision is totally anelastic, the boulder is 
captured by the soil structure, resulting in a velocity 

v = ω ⋅ h (19) 

Then Eq. (18) becomes: 
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with: 
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Then Eqs. (20)-(22) allow to calculate ω. 
The total work dissipated in a rotation dϑ of the system 

is: 

ϑ=ϑ⋅= ∑ dbFdML ii

n

1
i0  (23) 

with  
M0   initial moment; 
Fi   tensile force in the i-th reinforcement layer;  
bi   arm of the i-th reinforcement layer from the centre 

of rotation. 
By imposing the balance equation: 

L = K1 (24) 
the rigid rotation dϑ can be calculated, and therefore 

also the related rigid displacement 

xrigid = z dϑ (25) 
at any elevation z above the centre of rotation. 
The duration dtrigid of the rigid rotation can be easily cal-

culated as well: 

ω
ϑ

=
ddtrigid  (26) 

The motion of the system is arrested when the residual 
energy K1 equals the work dissipated by the coulombian 
friction between the soil and the reinforcement layers. 

The shear stress of the soil-reinforcement interface is: 

τ = σv tan ϕ ⋅fds (27) 
where: 
σV  vertical stress in the soil at the considered eleva-

tion; 
ϕ  peak friction angle of the soil; 
fds  direct shear coefficient 
The shear force at the i-th soil-reinforcement interface is 

therefore: 

Fi = τi ⋅ Ai (28) 
where: 

Ai   area of reinforcement affected by the motion due 
to the impact. 

 
As a first hypothesis, we can suppose that the soil mass 

and the reinforcement layers involved in the motion acti-
vated by the impact, and therefore “collaborating”, have 
the extensions shown in Figure 2. 

For a dynamic analysis of the motion of this collaborat-
ing system, we can characterize the soil with (Carotti & 
Rimoldi, 1997): 

- a horizontal stiffness coefficient K; 
- a viscous damping coefficient C; 
- a Coulomb friction force Fc . 
We can also characterize the reinforcing layers with 

(Carotti & Rimoldi, 1997): 
- a horizontal stiffness coefficient Kgg; 
-  a viscous damping coefficient Cgg. 
These parameters in reality act in the cone limited by 

the angle α in Figure 2b. With a further approximation, we 
can suppose that they act along the external surface of this 
cone. Then their component along the impact direction, 
supposed normal to the face, is: 

Kn = K ⋅ cos2 α (29) 
and similarly for the other coefficients. 
Then the collaborating soil-reinforcement system can be 

reduced to an equivalent 1-DOF oscillator, as shown in 
Figure 2 and 3. 
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Figure 2 First hypothesis of collaborating soil mass and reinforce-
ment layers: a) front view; b) plan view. 

 
Figure 3 Equivalent 1-DOF oscillator 

nggntot KKK +=  (30) 

nggntot CCC +=  (31) 

ntot ee FF =  (31) 

The circular frequency of this oscillator is given by: 

m
Ktot=ω  (33) 

The impulse force F generated by the impact can be 
evaluated as follows: 

1111 vmv)1k(mI =+=  (34) 

dtFI ⋅=  (35) 

dt
mF 11ν=  (36) 

The viscous work (Lv) during a deformative cycle with 
maximum displacement xd is equal to ¼ of the surface of 
the elliptical cycle in an ideal oscillation 

dtoteddtotv xFxxC
4
1L ⋅+⋅⋅ω⋅⋅π⋅=  (38) 

Since it must be: 

LV = K0 - K1 (39) 
then it is possible to obtain xd. 

The total displacement of the reinforced soil structure at 
any elevation is finally: 

xtot (z) = xrigid (z) + xd (z) (40) 

4 RHEOLOGICAL MODEL 

An alternative approach in the design of embankments for 
rock fall protection has been recently proposed by two of 
the authors (di Prisco and Vecchiotti 2003). The model in-
terprets the impact phenomenon by analysing separately 
the local response to the impact and the failure mechanism 
involving the  protection structure. This implies a two stage 
approach: 
1. Evaluation of the forces involved in the local impact 

phenomenon (maximum force transmitted by the 
boulder to the embankment); 

2. Estimation of the displacements of the material in-
volved in the failure mechanism. 

The first task can be accomplished either numerically 
(by performing 3D FEM analyses) or experimentally. As far 
as the former method is concerned, it is well known that 
many difficulties make the obtained results dramatically 
dependent both on the chosen numerical algorithm and on 
the introduced constitutive model for the soil. An alterna-
tive and promising numerical approach consists in per-
forming DEM (Distinct Element Method) analyses. In this 
case, the soil layer is described as the assembly of a large 
number of grain particles. The penetration of the boulder 
can be described even if the local displacements are very 
large. On the contrary, as far as the experimental ap-
proach is concerned, a large number of empirical relation-
ships can be found in literature, like those proposed by La-
biouse et al. (1994), based on the experimental tests 
performed at the EPFL’s labs of Lausanne. Even if the ex-
perimental apparatus employed in these tests was origi-
nally designed to investigate rock-fall loads on shelters, 
very important data have been collected about inertial 
forces acting on the structure and about the displacement 
of the boulder penetrating in the soil cushion. Unfortu-
nately, these tests concerned only vertical impacts on hori-
zontal soil strata and the maximum boulder’s energy taken 
into consideration is too low with respect to real cases.  

Very recently, Calvetti (1998) simulated numerically the 
Labiouse’s experimental data by using the UDEC code 
(Itasca). In Figure 4, jointly to the experimental set-up em-
ployed by Labiouse et al. (1994), a comparison between 
recorded data and numerical simulations is illustrated. A 
crucial problem concerning the use of such an approach 
as a design tool consists in the calibration of the constitu-
tive parameters describing the interfaces among grains. 

Figure 4 DEM model and numerical results from Calvetti (1998) 

In order to simplify the analysis of the local response of the 
soil to the impacting boulder, two of the authors recently 
developed a rheological model (Nova and di Prisco, 2003; 
di Prisco and Vecchiotti, 2003), capable of reproducing 
satisfactorily both the impact forces and the rock trajectory 
after the impact.  

The model is based on the following main hypotheses: 
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- the rock, spherically shaped, can be modelled as a 
shallow circular foundation, whose radius increases during 
the impact up to R (boulder radius); 

- the rock and the granular soil subject to impact are as-
sumed to be a macro-element (Nova and Montrasio, 
1991), characterised by an elasto-visco-plastic strain hard-
ening constitutive relationship, with a non-associate flow 
rule.  

The macro-element concept cited above assumes the 
presence of a rigid element (in our case the rock boulder) 
whose kinematics description is fulfilled by a vector with 
four components, which four generalised forces are asso-
ciated to. For the sake of simplicity, in the model proposed 
by the authors the trajectory of the boulder is assumed to 
be planar and rotations are neglected. As a consequence, 
the vectors describing generalised displacements q and 
the associated generalised forces Q are two-dimensional. 
As far as vertical impacts are concerned, we can sche-
matically sketch the model as shown in Figure 5.a; where it 
is easy to recognise an elastic spring, a viscous damper 
and a visco-plastic slider. This latter is described by the 
viscoplastic flow rule (Perzjna, 1963) defined here below:  

( )vp gq f
Q

φ ∂
=

∂
&  (41) 

where f and g are the yield function and the plastic po-
tential, respectively. For the sake of simplicity, the viscous 
nucleus has been defined as φ =<γd+c>, where the brack-
ets imply that the reported definition is valid only for posi-
tive values of their content, whereas for negative values 
φ =0. In this latter definition γ and c are constitutive pa-
rameters while d is the distance between the point corre-
sponding to the generalised stress state Q and the associ-
ated image point on the yield function defined by means of 
a radial mapping rule (Figure 5.b). As is evident from Fig-
ure 5.b, such an operation is done in the nondimensional 
space ξ,h (ξ=V/Vmax and h=H/µVmax, where Vmax  is the 
bearing capacity of the pseudo-foundation under centred 
vertical loading while µ is a constitutive parameter defining 
the horizontal sliding). The most of the parameters re-
quested by the model is related to common geotechnical 
data like the internal friction angle Φ’, the Young’s modulus 
E and the relative density Dr; only γ and c need to be cali-
brated on ad hoc experimental data. 

 Despite of its simplicity, the model performances are 
encouraging: in Figure 6 experimental data from Labiouse 
et al. (1994), concerning a mass of 100 kg falling from an 
height of 10 m on a gravel-like cushion, are compared with 
the aforementioned model predictions. It is important to 
underline that in Figure 6.a,b,c the calibration curves are il-
lustrated, whereas in Figure 6.d the validation ones. We 
must underline that each numerical curve corresponding 
with a certain mass is characterised by a unique set of 
constitutive parameters. By changing the mass of the 
boulder, we are forced to change the values of γ and c. 
This is physically meaningful because the change in the 
boulder mass is associated to a change in the boulder ra-
dius and consequently in the failure mechanism size. 

K η

γ,c

ξ=V/Vmax

h=
H

/µ
 V

m
ax

(a) (b)  
Figure 5 - (a) Model structure, (b) failure locus (from Nova and 
Montrasio, 1991) 

(a) (b)

(c) (d)  
Figure 6 Comparison between numerical and experimental data 

The model allows the engineer to analyse not only ver-
tical impacts on horizontal surfaces but even inclined im-
pacts on inclined slopes. In Figure 7, for instance, the tra-
jectory of a boulder during the impact on a slope inclined of 
63° ( the presence of geosynthetics reinforcements make 
possible such an angle of slope inclination) is illustrated. 
This makes such an approach available for analysing the 
dynamic local failure mechanism due to the impact of a 
rock boulder on a reinforced embankment.  

 
Figure 7 Boulder’s trajectory on a slope inclined of 63°  

The second task consists in describing the evolution of 
the failure mechanism within the embankment. In this 
case, the whole geometry cannot be disregarded. As is 
sketched in Figure 8, where the complete system is repre-
sented, a further degree of freedom is introduced: m1 
stands for the boulder mass, while m2 stands for the mass 
of the soil belonging to the embankment involved in the 
global failure mechanism (Figure 9). In this case, the 
dashpot is assumed to be perfectly plastic. Obviously, for 
the sake of brevity a one dimensional system is illustrated 
while the real model is geometrically two dimensional. 

In order to evaluate the resistance force, a large num-
ber of 2D and 3D failure analyses were carried out by 
means of both the limit equilibrium method and a FEM 
code (Tochnog, Roddeman, 2000). The presence of geo-
synthetics was considered by disregarding the effects due 
to large displacements. The resistance force value FCR is a 
function of the embankment geometry, of the impact point 
position s and of the boulder trajectory described by the 
aforementioned local model (Figure 10). 

m1 m2

11xm && 22xm && RESF  
Figure 8: Dynamic of the embankment subject to global failure 



 
 

 
 
 

680 

B

Meccanismo diMeccanismo di
rottura 3Drottura 3D

∆h

H

b
F

θs

failure local if
failure global if

⇒<
⇒≥

CR

CR

FF
FF

 
Figure 9: Local and global failure mechanisms  

 
Figure 10: Example of computed values for FCR  

If the condition F>FCR is satisfied, global collapsing oc-
curs and the mass m2 of the global failure mechanism 
starts moving, causing irreversible damage of the em-
bankment. As is exemplified in Figure 11, the impact phe-
nomenon becomes therefore the sequence of three distinct 
phases: 
 Phase number 1 (the local phenomenon), during which 

1 0x >&  and 2x& =0. In fact, the force acting on m2 is less 
than FCR. 

 Phase number 2 (the transition condition), during which 
1 0x >& and 2x& >0 but 1 2x x≠& & . The boulder continues in 

penetrating within the embankment, even if a global 
mechanism is activated. 

 Phase number 3 (the global failure phenomenon) during 
which 1 2 0x x= >& & . The boulder translates together with 
the soil block defined by the 3D sliding surface. 
The type and duration of the three phases depend on 

many factors regarding the impact energy and the em-
bankment structure.  

Time (s)

D
is

pl
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em
en

t (
m

)

Ph1
Ph2
Ph3

 
Figure 11: Description of the impact phenomenon 

5 CONCLUSIONS. 

Mathematical models of reinforced soil structures subject 
to dynamic impacts have been developed, based on 
ballistic, structural mechanics and soil mechanics 
principles. From early models derived from experiments on 
totally different kind of structures, research ha advanced to 
a model based on anelastic impact principles and to a 
rheological model which takes into account the phase of 
impact, where only local phenomena are encountered, and 
the phase of subsequent motion of a soil mass triggered 
by the energy exchange between the impacting boulder 
and the barrier. The work is just started, but the methods il-
lustrated in the present paper seems very promising and 
they will allow in the near future to yield proper design 
methods for reinforced soil rock fall protection structures. 
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