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A.Asaoka
Nagoya University,Japan

G.Pokharel & T.Ochiai
Yahagi Construction Co., Ltd, Nagoya, Japan

ABSTRACT: A series of FE computations on reinforced soils were camied out introducing a new 3-D rigid
plastic FE analysis method where a linear consiraint condition of " no-length change" upon the consecutive soil
nodes along a reinforcing barare imposed. Stability of a reinforced soil slope was studied for varying friction
angles and the reinforcement lengths. Axial force in the reinforcement, safety factor and velocity field were
studied. The difference between the 2-D modeling of linear reinforcements as an equivalent continuous plate
and linear reinforcements as is in 3-D analysis were distinguished. Effectiveness of the reinforcement in
reducing the lateral deformation and improving the safety factor could be explained in better way than in the 2-
D analysis. The 3-D analysis is more challenging and promisingin studying the Reinforced Soil Structures and
also to verify and improve the performance of the existing as well as newly proposed 2-D analysis methods

e.g. RPFEM.

1. INTRODUCTION

The extensive use of reinforced soil technology in the
present soil slope stability as well as embankment
construction works has urged researchers to introduce
most promising and precise methods for the
computation of safety factor, axial force in the
reinforcement, stress distribution in the soil mass and
failure surface or failure modes of the reinforced soil
structures. The FE methods introduced so far are still
lagging in correctly modeling the mechanism of the
reinforced soil system. Especially, the problem arises
when the linear reinforcing bars are placed in
staggered manner and spacing is not close enough to
model the reinforcing bars as an equivalent
continuous reinforcing plate just like in geogrod. The
accuracy of computation, because of this assumption,
decreases when ratio between the cross sectional area
of the reinforcement to the circumferential area
increases. The assumption of equal stiffness for the
equivalent reinforcements in the 2-D FE analysis may
over estimate the reinforcement-soil contact area, this.
ultimately results the over-esimation of the shear
force acting around the reinforcement which gives
higher safety factor as well as higher reinforcement
force. To overcome this problem, 3-D analysis
becomes an essential so as to minimize the difference

between the prediction versus performance of a
structure once it is constructed. The fulcrum of the
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present research is to propose a new concept of
computation for the reinforced soil structures when
reinforcements are linear reinforcing bars, e.g. soil
nails. :

The reinforced soil system at limiting equilibrium
state formulated by Asaoka et al.(1994) for 2-D
analysis based on the rigid plastic finite element
method (RPFEM) of Tamura et al.(1984,1987) is
extended, in the present study, to the 3-D analysis of
similar structures. In their formulation, a linear
constraint condition which impose the length between
two soil nodes along the reinforcement to remain

-constant during failure, called as " no length change"

condition, is imposed upon the velocity- field in the
soil mass at limit state. The constraint condition is
extended to the modeling of reinforcing bars in 3-D
space. Based on this analysis procedure, factor of
safety/failure load, the axial force in the
reinforcement, mean confining pressure distribution
in the soil mass and the velocity field of the reinforced
soil mass at limiting equilibiium state are
simultaneously computed. ’

The characteristics features of the proposed 3-D
analysis method and effectiveness of the reinforcing
bars in the soil mass are examined through analyzing
a series of reinforced soil slopes with varying friction
angles and reinforcement lengths. Advantages and
limitations of the proposed methods are discussed in
detail in reference to 2-D analysis methods.



- 2. MODELING OF REINFORCED SOILS

The formulation of "no-length change" are illustrated
here in terms of the 3-D velocity field assuming that

the soil mass is at limit state. This is just to .

incorporate this constraint condition into the rigid
plastic finite element method in the perspective of 3-D
analysis. The formulation is an extension from the 2 -
D analysis presented in the earlier paper(Asaoka et
al.,1994).

1.1 No-length Change Condition in3-D space

The concept of "no-length change" condition
introduced by Asaoka etal.(1994) is explained here in
the perspective of 3-dimensional problem which is
almost similar to the one they introduced for the plane
strain analysis. As discussed in the introduction, the
linear reinforcing bars in 3-D space is modeled in 2-D
plane strain modeling as a continuous plate. The third
dimension in 3-D allows the reinforcements to behave
as in real structures and the FE mesh discretization

can exactly in this case can simulate the spacing of

reinforcement on 3rd dimension.

Thus, the "no-length change" condition in 3-D space
eans the reinforcements in the soil mass fastens

" each soil elements. touching the reinforcement along

reinforcement axis. At the limit state of soil mass, the
no-length change condition requires that every

reinforcing lengths between two consecutive soil -

nodes remain constant. - Referring Asaoka et
al.(1994), the "no-length change" condition is
mathematically derived basedonll 1= 11+A 1], as
shown in Fig. 1 where the plastic flow of A and B to

A’ and B', respectively, on a small time, dt is -

illustrated. The constraint condition can be simplified
to the following linear equation.

' T(. .\ a4
(X =) (dp ~ 1) = 0 . (1)
Above equation can be integrated for the total

reinforced soil system by assembling each reinforcing
elements in the matix, C;, in general form:
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where # is the vector of all nodal velocities.
Considering AB (length =/;) and BC (length =) are
reinforcing elements passmg through A, B and C
consecutive soil nodes along reinforcement axis, the
assembled part of Cr#=0 corresponding to these
reinforcing elements AB and BC is in the following
form:
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Fig.1 Conceptof " no-length change"
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3. INCORPORATION OF CONSTRAINT,
CONDITION INTO THE RPFEM

‘On the basis of the upper bound theorem on

plasticity, the rigid plastic finite element
method(RPFEM) is obtained through minimizing the
rateof internal plastic energy dissipation with respect
to the kinematically admissible velocity field under
some linear constraint conditions (Tamura et al. 1984) .
as summarized in the next paragraphs.

‘The formulation is employed by introducing the

Lagrange multipliers A, g, and v to solve the
minimization problem under constraint conditions.:
The following func#on is minimized: :

o A v.pt) = f, D()dv + AT(La-0)

+ 07 (Crie=0)+ p(F 1) ®

in which D is the rate of internal plastic energy
dissipation. L is the matrix defined such as ¥= La
where 1 is the rate of volume changes in all elements.
Therefore the first constraint condition, Lie=0

~ indicates that rate of plastic volume change is always

zero for all elements at the limit state (Mises material).
The second constraint condition, C; =0 indicates the
“no length change" condition, see Eq. (2). The third
constraint condition, FT#=1 defines the provisional

~ norms of velocity vectors at every node. As the rate

of ternal plaskc energy dissipation, D(#) is the
convex function of #, a local stationary condition of
® gives the global minimum of ?. Then taking the -
derivative of function, 90, ‘one has the following
equilibrium. equation of forces at limit state and
accompanied consiraint conditions. - '
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I‘PTst+LTl+C,TU+uF=0 (6)
Li=0 7
Cu=0 (8)
Fli=1 )

in which s denotes the deviator stress vector while
Lagrange multipliers A and ft are interpreted as
interpreted as the indeterminate isotropic stress and
the load factor, respectively (Tamura et al., 1984).
Interpretation of the Lagrange multiplier, 9,
introduced to model the reinforcements is illustrated
here.

The Lagrange multiplier,V, fs interpreted as the unit
nodal forces acting on the constrained nodesalong the
reinforcement direcion (Asaoka et al. 1994). For
example, the forces calculated as © in the horizontal
reinforcement is illustrated in Fig. 2. The forth term
in Eq. (6), GIv, can be rewritten by the x, y
component of the points A, B and C as follows:

'1' . .
Cl V= (llxvll Oy _12)!’ _llxvl+llxv2! 0‘ -IZIVZ’ 0)

(10)
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: X

Fig. 2 Interpretation of ¥ as axial force per unit

length along the reinforcement axis.

3.1 Stress-Strain rate Relationships at Limiting
Equilibrium State

Egs. (6)-(9) define- statically indeterminate limiting
equilibrium equation problems and these equations
are solved with the aid of a conswtutive relation of
soils at limit equilibrium state. As the no rate of
volume change is assumed in Eq. (7), the following
the Mises type plastic flow is employed (Asaoka and
Kodaka 1994).

g, - - -
8; =7°£,-j where € =/€£; (11)

1

where €jj denotes a plastic strain rate. In this study,
the. Mises constant og is assumed to follow non-
dilatant Drucker Prager characteristics, that is,

oo =233 @ py, +k). (12)
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In plane strain matching, Drucker Prager constants
are related to Mohr Coloumb constants as follows:

tang _ 3c

J(; +12tan? ¢) , J (9 + 12tan2¢)

in which p,, denotes the mean confining pressure and
cand ¢ are the cohesion and frictional angle in Mohr-
Coloumb type material under plane strain conditions,
respectively. Note that the relasonship of o and k
with ¢ and ¢ varies depends on the type of 3-D
problem considered. The relasionship mentioned in
Eq.(12) is strictly applicable only under the plane
strain conditions. In other words, Eqs.(12) define the
Drucker-Prager type soil as an assembly of the
inhomogeneous Mises materials(Fig.3) where each
soil part consists of different Og with respect to
corresponding confining pressure, pm,(Asaoka et al.,
1994). Although this problem seem to follow the
non-associated flow rule, the solutions obtained by
iteradve calculations satisfy the associate flow rule at
the time of convergence, see the flow chart in Fig.4.

o=

(13)
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(a) purely cohesive clay (b) frictional soil

Fig.3 Modeling of non-dilatant soils

Set o

v

Limiting Equilibrium Analysis

Og=Sg for each element

Fig.4 Flow chart adopted in the present 3-D analysis.
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- 4. OUTLINE OFNUMERICAL ANALYSIS

The representative problem chosen is the stability
analysis of slopes in which collapse is caused by the
body force of soil mass and the slope is reinforced by
a set of linear reinforcing material (e.g steel
bars/nails) inserted from the slope face like in soil
nailing. The material constants for the Drucker Prager
material are computed using Mohr Coloumb
Parameters, c-¢, based on the plane strain matching
as explained in the preceding sections. The case when
« is zero, the Drucker Prager material is exactly same

as the Mises material, i.e. purely cohesive clay.
In this study, the friction angle (¢) is increased

from O to 25° at an interval of 5° to understand the
effect of the frictional angle on the stability of
reinforced soils, (i.e. safety factor and velocity field)
and the axial force in the reinforcement.

Fig.5 FE Arry for 3-D analysis®.

Fig.5 shows the FE array and the boundary
conditions used throughout this study. The height of

- the slope is kept 4 m and slope of the tace is 1:0.5.

The soil properties of the Mises material are cy

"=10kN/m2 and Y=18.4 kN/m3- It should clearly
" hoted here that the cross sectional area of the

reinforcing material is not required at all because the
reinforcing material is always assumed not to change
length, in other words, the reinforcement is -rigid in
axial tension avoiding the need of absolute stiffness
inside the numerical analysis. '

Reinforcements are placed at different layers

depending on the cases considered. There are

‘especially 4 cases. Reinforcements are placed on each

layers, i.e. 1.Top layer 2. Middle Layer and 3.

‘Bottom Layer in individual cases and 4.Multiple

Layer reinforced case where the Top and the Bottom
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Layers- are reinforced at the same time. The’
reinforcements are laterally (in z-direction) are placed
at 2 m spacing. Thus, in every alternative FE nodes in
the lateral direction as shown in Fig. 5. The length of
the reinforcement in all the cases mentioned above ig
fixedto 2m long. One additional set of computations
are made for the middle layer reinforced with 4m long
bar so as to illustrate the effect of reinforcement
lengths. The computations for the unreinforced cases

. for different frictional angles, ¢, are also presented

for the comparison purposes.

5. RESULTS AND DISCUSSIONS

The numerical simulation work is performed, in the
present study, using the rigid plastic finite element
method (RPFEM) imposing the constraint conditions
upon the 3-D velocity field as as introduced in the
earlier sections. The RPFEM is used to compute the
load factor for the gravity loading.

Figures 6 illustrates the variation of the safety

" factor with respect to the different friction angles. For

illustration purposes, the velocity field in the soil
mass and the axial force distribution in the reinforcing
bars are presented, respectively in Figs. 7 and 8
where ¢.=0°, 15°, and 25°. These figures present that
the reinforcements are considerably effective in
improving the stability of the soil mass and reducing -
the lateral deformation/plastic flow of the soil mass.
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(U8 } . i ‘ -
0 10 20 - 30 _
Friction Angle (degrees)

* Fig.6 Variation of Safety Factor with ¢ .for different -

bar positions (Lr=2m) . '



Velocity fields indicate wider failure zone for
smaller friction angles and as the friction angle
increases the failure zone approaches close to the
slope face because of very low confining pressure
near the slope face. Velocily vectors around
reinforcements are normal to the reinforcement axis,
thus, confirming the effectiveness of reinforcement in
reducing the lateral flow of the soil mass.

Axial force in the middle layer and bottom layer
reinforced cases have higher magnitudes compared to
the axial force in the top layer reinforced case.
Furthermore significant axial force developed at the
inner side of the reinforcing bars in these cases can be
clearly observed when the frictional angle becomes

(c) TopandBottom(Multiple) Layers Reinforced

larger. In all the cases, the peak in the axial force
distribution curve can be seen moving towards inner
direction for larger friction angle because of high
confining pressure around the inner end of the
reinforcement. It indicates that the facing material if
used, it confine the soil close (o the slope face. The
high confining pressure offered by the facing avoids
the possibility of local failure close to the slope face.

Effect of reinforcement length can be visualized
through the safety factor variation, velocity field, and
axial force in the reinforcement shown in Fig.9. As
the reinforcement length becomes very long, the
reinforcement divides the velocity field into two clear
failure zones up and under the reinforcement.

(d)  Unreinforced Soil Mass

Fig. 7 Velocity Field for different cases of reinforced cases and unreinforced soil mass

Legend
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Fig. 8 Axial Force in the reinforcement for different cases
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Overall, the .effect of modeling the linear
reinforcements through 3-D FE analysis compared to
the 2-D plane strain problem can be easily
distinguished. through the axial force distribution. The
axial force in 2-D analysis assuming an equivalent
continuous reinforcing plate is quite higher (Asaoka et
al., 1994) than the 3-D analysis by modeling the
linear reinforcement as it is in the real construction
work. The higher factory of safety in 2-D RPFEM
computations can be attributed to this difference in
modeling the linear reinforcements. This should be
the principle advantage of the 3-D analysis of the soil
structures- reinforced with linear reinforcing bars.
Pajametric studies through 3-D FE analysis may be
casried out, to improve the performance of simplified
2-D analysis method. This should be the fulcrum of
3-D analysis.

6. CONCLUSIONS

A series of numerical computations on plain and
reinforced soil slopes were presented. Behavior of
these slopes were observed at the limit state of soil
mass. In this study, the mechanism proposed by
Asaoka et. al(1994) is extended to 3-dimensional
analysis. Numerical computations were carried out
based on the RPFEM. The following conclusions are
drawn through the present study.

1). The mechanism of the reinforcement is modeled
by employing the linear constraint condition of " no-
" length change" in energy functions. Performance of
linear reinforcements is explained in 3-D analysis
using the no length change condition, in better way
than compared to the 2-D analysis when the
reinforcements are linear reinforcing bars and not the
continuous plates as assumed in arriving the 2-D
- plane strain condition. Therefore, the 3-D analysis
should be used to evaluate the performance of
simplified models in 2-D plane strain analysis and
their further improvement. '

2). The computed factor of safety is substantially
-increased when the soil mass is reinforced. The effect
is more prominent as the friction angle increases. This
confirms that the reinforcement is very effective in
frictional soils as compared to the cohesive clays. It
should be attributed to the very high confining
pressure around the reinforcement. ‘
3). Higher axial strain distributions in the
reinforcements show that the efficiency of reinforcing
bar increases as the frictional angle increases. The
normal velocity vectors around reinforcements also
 confirms that the reinforcement is effective in
reducing the lateral plastic flow of soil mass.

—— ¢=0°"

.40 —&|— $=15°
%’ 20 =25°
i
la D
é’ Rein}orcemen% Length, 1311 4

(a) Axial Force Distributions

(¢)  Velcxity Field for 4m Long Reinforcement

Fig. 9 Effect of Increasing Reinforcement Length
- (Middle Layer Reinforced Case)
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