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ABSTRACT: The paper presents the mathematical model for reinforcing masonry in seismic areas. 
The model is based on Prandtl’s Theory of Plasticity and approaches the ultimate limit state 
reached by mortar under the combined action of vertical and lateral loads. It is assumed that when 
on some interfaces the shearing stresses reach their limit values of yielding the bed joint mortar be-
haves like a plastic material and is laterally expelled. The so-called sandwich effect occurs. Beside 
the loading conditions the phenomenon depends on the mechanical properties of mortar by its 
shearing strength and by the geometry of masonry by its aspect ratio. With the aid of polymer grids 
inserted in bed joints the expulsion phenomenon is put under control and can be reduced or defi-
nitely prevented. The synthetic reinforcement was already successfully used in other engineering 
applications. In the case of masonry by lab tests the techniques of reinforcing, either by inserting in 
bed joints or by confining, were statically and dynamically validated. They are cost effective and 
easily applied either to existing damaged buildings for repair and retrofitting or to new ones for 
strengthening and preventing damages. Neither additional qualification of labor nor extra devices is 
required 

1 INTRODUCTION 

Masonry is one of the oldest construction materials still used for a large number of buildings and 
structures. Originally, it was consisting of elastic clay brick and plastic lime mortar. During centu-
ries by its ductility masonry self-defended against any stress concentrations caused by unequal set-
tlements, natural hazards or technological aggression. After the industrial revolution the bearing 
capacity of masonry buildings has had to be increased. The porous solid bricks were replaced with 
ceramic caved bricks, while in mortars cement replaced the lime. Therefore brittle bricks are now 
bound with brittle mortar. The resulted masonry became indeed more resistant and stronger but it 
almost completely lost its ductility. Under seismic actions for example the brittle caved bricks are 
easily crushing. The principle of fail-safe does not any longer apply to the modern masonry. Since 
to the occurring dramatic situation there is no returning way to the old masonry the advanced tech-
nology answered with alternative solutions beginning with chemical additives for mortars and end-
ing with a large sort of fibbers. The basic idea promoted by this paper is to restore the ductility of 
masonry with the aid of synthetic reinforcement. 

2  POLYMER GRIDS 

The proposed synthetic reinforcement consists in polymer grids. When placed in a continuous me-
dium such as mortar, the ribs that are transverse to the direction of primary loading act as a series 
of bearing surfaces or anchors. This is a highly efficient mechanism for transferring stress that mo-
bilizes the maximum benefit from the grid reinforcement and minimizes anchorage lengths. The 
ribs of the integral biaxial grids are manufactured with near vertical faces, which provide an excel-
lent bearing surface for interlocking with aggregate particles of the mortar. The interlocking 
mechanism between grid reinforcement and different matrices has been demonstrated in both labo-
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ratory and on site pull out testing.  Polarized light has been used to view the rupture patterns during 
pull out testing of a grid in a bath containing sintered glass and glycerin.  This effective interlock 
mechanism combined with high junction strength, sufficient constraining hoop bursting stress and 
high tensile stiffness at low strains, accounts for the efficiency of the biaxial grids in strengthening 
mortar and confining masonry. 
    The reinforcing approach with synthetic grids essentially differs from that used for steel bars.  
Polymer grids are firmly fixed in mortar by interlocking of their joints.  The mechanism of stress 
transfer from mortar to grids is discontinuous and produces only around the solid joints through 
normal stresses, without any contribution of the tangential ones. Only tensile forces are transferred 
from mortar to grids.  Inserting such grids in bed joints prevents lateral expansion of the mortar 
through tensile forces in the grid.  In addition, the tensile forces in grids together with shearing 
stresses at the two interfaces prevent the development of lateral strains in the horizontal plane.  In 
this way the mortar is subjected to a three axial state of compression, which substantially increases 
its bearing capacity.  Since the strengths of grids are much higher than the loads transmitted by 
bricks, it is practically unnecessary to reinforce each bed joint. In most cases, reinforcing each fifth 
layer, or 2-3 layers per meter run, would be sufficient. 

3  REINFORCING TECHNIQUES 

For seismic protection of buildings and structures, reinforcing the masonry structural members with 
polymer grids shows great potential. This work involves three specific techniques for reinforcing 
masonry with polymer grids: 1) inserting them in the horizontal layers of mortar between bricks; 2) 
coating the outer surfaces of masonry with reinforced plaster; and 3) confining the structural mem-
bers with the same reinforced plaster. In all cases, synthetic reinforcement compensates for ma-
sonry’s lack of ductility and enhances its natural strength capacity.  
    The first technique improves load transfer capacity between the masonry units, since the rein-
forcement prevents horizontal expansion of mortar.  As already mentioned, it is not necessary to lay 
the grids in all mortar beds, but only in some of them at vertical distances between 20 cm and 40 
cm. The joints are obtained by superposition without any joining devices. Coating the masonry 
with reinforced plaster improves the shear resistance of the masonry wall, whether or not the hori-
zontal reinforcement is present. This technique is efficient only when the reinforced plaster adheres 
well to the masonry surface. The effect of this type of reinforcement is bi-directional, in the plane 
of the wall. Finally, confinement with reinforced plaster improves both compression and shears re-
sistance and is most efficient when combined with the reinforcement in horizontal layers. This type 
of reinforcement acts in a three-dimensional sense and can be used to increase the bearing capacity 
of structural members several times. 
    The polymer grids can be used as reinforcement for both engineered and non-engineered ma-
sonry within either new or old buildings.  Each case should be analysed separately according to the 
characteristics of the masonry units and the mortar, as well as the type of construction.  The impor-
tance of workmanship in this context cannot be overstated. Typical masonry configurations are 
commonly laid in running bond, with the units overlapped on half their length. Single-wythe, or 
barrier walls are most common. Multiple-wythe walls are also constructed and can consist of com-
posite brick-block walls. However, cavity walls are not allowed in seismic areas. 
    All the available masonry units, such as bricks and blocks, can be associated with polymer grids. 
Clay units, dense or lightweight aggregate concrete units, autoclaved aerated concrete units, cal-
cium silicate units and natural stones can be used in reinforced structural members. Solid clay 
bricks are the most efficient for use with reinforcing, since they produce a rather uniform pressure 
on the polymer grids. Vertically perforated bricks are also useful in reinforced masonry. In seismic 
areas vertically hollowed bricks are not recommended, while horizontally hollowed ones are pro-
hibited. 
    Three types of mortar are commonly used for masonry: cement, cement–lime and lime mortar. 
When masonry is reinforced with steel bars, lime is not allowed for corrosion reasons and only ce-
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ment mortar should be used. On the contrary, for synthetic reinforcement there are no restrictions 
on mortar composition. Of course, the most common cement-lime mortar, in all code-specified 
proportions, can be freely used. In some cases, lime mortar may be preferred for special conven-
ience. There is also no limitation on characteristic compressive strength of the mortar. The addi-
tives like plasticizer, air-entraining, water-retention and set-retarding agents can be freely associ-
ated with the polymer grids (Sofronie 1999 a,b). 

4 MATHEMATICAL MODEL 

In order to explain the behaviour of masonry under the simultaneous action of vertical force of 
compression P and a horizontal shear force Q the Prandtl’s type of mathematical model was 
adopted. The bricks are considered as parallel, rigid and rough plates while the mortar as a thin, 
plastic layer with the ratio a/b always larger than 10 (Fig.1). 
 
 
 
 
 
 
 
Figure 1: Prandtl’s mathematical model 
 
    When only compressed up to the limit state of plastic equilibrium the layer of mortar flows 
sideways from the centre to the edges. Large tangential stress arise at the contact surface (Fig. 2a). 
 
 
 
 
 
      a. Vertical force P                  b. Horizontal force Q 

 
Fig 2: Tangential stresses          and            
 
    When submitted only to shear up to the same limit state of plastic equilibrium in the bed joint of 
mortar tangential stresses occur (Fig. 2b). For the sake of simplicity they will be assmed uniformly 
distributed.  
    Usually, the forces P and Q are simultaneously acting. Then the two components of tangential 
stresses are superposing. On the interfaces, where the maximums value k is reached, i.e. 

(1) 
 
plastic deformations are developing. In the other interfaces where  
 

(2) 
 
the yield limit for shear k is not reached (Fig. 3). 
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Figure 3: Limit state of tangential stresses 
  
Generally, when                     k1  is positive. The cases when                   and  k1 = 0,  
 
or                    and k1 is negative are also  
 
further considered. 
    With the notation  
 

(3) 
 
where always  

(4) 
 
one assumes for the state of stresses in plane strain the solution 
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where C is an arbitrary constant. 
    This solution should satisfy both the differential equations of equilibrium 
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(10) 
 
 
 
 
 
which corresponds to the state of compression without shear, while for � = +1 
 
�x����y��������xy = k, (11) 
 
i.e. the pure shear of the plastic layer of mortar occurs. 
    The above equations must be supplemented by relations which link the stress components with 
the increments in the strain components. Such relations are those of the Saint Venant-von Mises 
Theory of Plasticity. For the case of plane strain there is the equation 
 
 
 

(12) 
 
 
where vx and vy are velocity components. 
    This equation states that the direction of the surface of maximum tangential stresses coincides 
with the direction of the surface which experiences the maximum rate of shear strain. In addition 
the incompressibility condition 
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should be satisfied. 
    The components of the velocity vector 
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and 
 

(15) 
 
satisfy the incompressibility condition (13) and equation (12) for the arbitrary values of  the con-
stants c and V. It follows from (14) and (15) that each of the bricks moves on the mortar layer with 
a speed c. 
    The parameters c and V are related through the incompressibility condition; the flux of material 
through the section x = a must be equal to the amount of material which extrudes in unit time and 
length a as the bricks move together 
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from (27) results 
(29) 
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    In particular, for q = 0 one finds 
 
 
 
 
which is identical with (26), and from (23), for the bearing capacity under compression without 
shearing, results 
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Shearing force Q reduces this bearing capacity as it is shown in figure 4 where expression (30) is 
represented for five values of the aspect ratio a/b. 
 

Figure 4: Shear – Compression diagram 
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(39) 
 
 
 
 
 
and for x = a, y = 0 from the same expressions (33÷35) 
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Figure 8: Variation of stresses on mortar layer thickness 
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(56) 
when no expulsion occurs. 
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    By inserting a reinforcement in the bed joint the phenomenon of expulsion can be reduced or 
prevented (Fig. 9).  
 
 
 
 
 
 
 
Figure 9: Bed joint reinforced with polymer grid  
 
The strength condition is 

(57) 
 
where R is the design strength of the synthetic reinforcement in kN/m. Since the maximum expul-
sion occurs in the central zone of the model condition (57) should be checked for x = 0. 
    Practically, there is not necessary to reinforce every bed joint of masonry columns and walls. For 
the usual values of forces P and Q the analysis has shown and the lab test confirmed that is good 
enough if only each fourth, fifth or sixth bed joint were reinforced with polymer, grids (Fig. 10).  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 10: Reinforcement layout 
 
When the vertical forces of masonry member are foreseen to be plastered, with plain or reinforced 
mortar, the length of horizontal grids will be accordingly provided. No special devices for joining 
the grids are necessary, since they are simply overlapping. 

5 TESTING VALIDATION  

 
The method of reinforcing masonry with polymer grids was patented in 1995 (Sofronie, Feodorov 
1995). The first static tests have been comparatively carried out on 12 short columns subjected to 
axial compression and on 18 wall panels subjected to both axial compression and diagonal tension 
(Sofronie 1997). Then two three-dimensional models, one for masonry buildings and another for 
RC frames with masonry infills, have been successively tested on ISMES’ shaking table in Ber-

,  RF ≤
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gamo (Juhasova, et al., Sofronie 1998). Further, some masonry infills reinforced with polymer 
grids have been included among other infill models comparatively tested to lateral actions at LNEC 
in Lisbon (Pires et al.1998, Sofronie, Popa 1998 a,b). 
    The behaviour of masonry infills reinforced with polymer grids under lateral loads has been re-
cently tested at the European Laboratory for Structural Assessment of the EC in Ispra. Two typical 
infills were chosen for testing at full scale: one full panel without openings for doors or windows 
and another one with two non-symmetric openings. The scope of the testing programme was to ob-
tain basic data on the response of such infills when the surrounding frame is subjected to prescribed 
alternating lateral displacements of increasing amplitudes, in a manner that simulates earthquakes 
(Colombo et al., Juhasova et al. 2000). 

6  CONCLUSION 

 
Polymer grids have proven to be one of the most appropriate reinforcements for repair and 
strengthening of masonry buildings. They are cost effective, easily applied and long lasting con-
struction materials.  Neither additional qualification of labour nor extra devices is required.  By us-
ing polymer grids, it became possible to eliminate massive RC members or expensive steel rein-
forcement and create more homogeneous masonry structures accordingly shaped.  The existing 
theoretical background and validated testing data allow developing any conceptual design. The re-
quired degrees of safety are achieved on the basis of a fail-safe principle.  Reinforcing techniques 
are applied either to existing damaged buildings for repair and retrofitting or to new buildings for 
strengthening and preventing damages.  Polymer grids also solve the problem of compatibility be-
tween the old, possibly ancient, and new construction materials for preserving or restoring histori-
cal buildings and monuments. Indeed, one of the most important advantages of polymer grids as re-
inforcement consists in the fact that cement can be eliminated from the mortar composition and, if 
necessary, only lime mortar or other binding materials compatible with the polymer can be used.  
Romanian authorities e.g. already delivered the technical agreement for the use of polymer grids 
for repairing masonry buildings in seismic areas (Sofronie, Bolander 1999, 2000) 
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